1
因式分解的14种方法
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞
赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对
称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则
1分解要彻底2最后结果只有小括号
3最后结果中多项式首项系数为正(例如:1332xxxx
)
分解因式技巧
1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法
⑴提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个
因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母
取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数
取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公
因式,所得的商即是提公因式后剩下的
一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇
偶。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把22a+
2
1
变成2(2a+
4
1
)不叫提公因式
⑵公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:2a2b=(a+b)(a-b);完全平方公式:2a±2ab+2b=2ba
2
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个
数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:33ba
=(a+b)(2a
-ab+2b
);
立方差公式:33ba
=(a--b)(2a
+ab+2b
);
完全立方公式:3a±32a
b+3a2b±3b
=(a±b)2.
公式:3a
+3b
+3c
-3abc=(a+b+c)(2a
+2b
+2c
-ab-bc-ca)
例如:2a
+4ab+42b
=(a+2b)2。
⑶分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一
分法。
比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了
困难。
同样,这道题也可以这样做。
ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)
几道例题:
1.5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay
和3by看成一个整体,利用乘法分配律轻松解出。
2.x3-2x
+x-1
解法:=(x3-2x
)+(x-1)=2x
(x-1)+(x-1)=(x-1)(2x
+1)
利用二二分法,提公因式法提出x2,然后相合轻松解决。
3.2x
-x-y2-y
解法:=(2x-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
⑷十字相乘法
这种方法有两种情况。
①2x+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是
常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:
3
2x
+(p+q)x+pq=(x+p)(x+q).
②k2x
+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m时,那么kx2+mx+n=(ax+b)(cx+d).
图示如下:
ad例如:因为1-3
××
cd72-3×7=-21,1×2=2,且2-21=-19,
所以72x
-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
⑸裂项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合
于提公因式法、运用公式法或分组分解法进行分解。这钟方法的实质是分组分解法。要注
意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).
⑹配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方
差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也
要注意必须在与原多项式相等的原则下进行变形。
例如:2x
+3x-40=2x
+3x+2.25-42.25=225.65.1x
=(x+8)(x-5).
⑺应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=2x
+5x+6,f(-2)=0,则可确定x+2是2x
+5x+6的一个因式。(事实上,
2x
+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值
为零,则q为常数项约数,p最高次项系数约数;
2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
⑻换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因
式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元.
例如在分解(2x+x+1)(2x+x+2)-12时,可以令y=2x+x,则
原式=(y+1)(y+2)-12=y2+3y+2-12=y2+3y-10=(y+5)(y-2)
4
=(2x
+x+5)(2x
+x-2)=(2x
+x+5)(x+2)(x-1).
⑼求根法
令多项式f(x)=0,求出其根为x1,x,x3,„„xn,
则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)„„(x-xn).
例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4+7x^3-2x2-13x+6=0,
则通过综合除法可知,该方程的根为0.5,-3,-2,1
.
所以2x^4+7x^3-22x
-13x+6=(2x-1)(x+3)(x+2)(x-1).
⑽图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,„„xn,
则多项式可因式分解为f(x)=f(x)=(x-x1)(x-x2)(x-x3)„„(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确。
例如在分解x^3+22x
-5x-6时,可以令y=x^3;+22x
-5x-6.
作出其图像,与x轴交点为-3,-1,2
则x^3+22x
-5x-6=(x+1)(x+3)(x-2).
⑾主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
⑿特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后
的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例如在分解x^3+92x
+23x+15时,令x=2,则
x^3+92x
+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7.
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的
值,
则x^3+92x
+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
⒀待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多
项式因式分解。
例如在分解x^4-x^3-52x-6x-4时,由分析可知:这个多项式没有一次因式,因而只能
分解为两个二次因式。
于是设x^4-x^3-52x-6x-4=(2x+ax+b)(2x+cx+d)
=x^4+(a+c)x^3+(ac+b+d)2x
+(ad+bc)x+bd
5
由此可得a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x^4-x^3-5x2-6x-4=(x2+x+1)(x2-2x-4).
⒁双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。
双十字相乘法就是二元二次六项式,启始的式子如下:
ax2+bxy+cy2+dx+ey+f
x、y为未知数,其余都是常数
用一道例题来说明如何使用。
例:分解因式:x2+5xy+6y2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:
原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y);
②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中
6y2+18y+12=(2y+2)(3y+6);
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,
否则容易出错。
多项式因式分解的一般步骤
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组
分解要合适。”
几道例题
1.分解因式(1+y)2-2x2(1+y2)+x4(1-y)2.
解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项)
=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方)
=[(1+y)+x2(1-y)]2-(2x)2
=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]
=(x2-x2y+2x+y+1)(x2-x2y-2x+y+1)
6
=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何实数x,y,下式的值都不会为33:
543223451241553yxyyxyxyxx
解:原式=(x^5+3x^4y)-(5x^3y2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x2y2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x2y2+4y^4)
=(x+3y)(x2-4y2)(x2-y2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互
不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是
等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c2+a2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n
×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
本文发布于:2023-03-04 15:08:28,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1677913708136107.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:分解式.doc
本文 PDF 下载地址:分解式.pdf
留言与评论(共有 0 条评论) |