高一数学集合知识点汇总
高一数学要透彻理解书本上和课堂上老师补充的内容,有时要反
复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础
上好问。接下来小编为大家整理了高一数学学习的内容,一起来看看
吧!
高一数学集合知识点汇总
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每
一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过
描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性
(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元
素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);
2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)补集:CUA={x|xA但x∈U}
注意:①?A,若A≠?,则?A;
②若,,则;
③若且,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,
特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,
A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子
集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
【例1】已知集合
M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足
关系
A)M=NPB)MN=PC)MNPD)NPM
分析一:从判断元素的共性与区别入手。
解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}
对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3
除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。
分析二:简单列举集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时
不要急于判断三个集合间的关系,应分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以选B。
点评:由于思路二只是停留在最初的归纳假设,没有从理论上解
决问题,因此提倡思路一,但思路二易人手。
变式:设集合,,则(B)
A.M=.
解:
当时,2k+1是奇数,k+2是整数,选B
【例2】定义集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},
则A*B的子集个数为
A)1B)2C)3D)4
分析:确定集合A*B子集的个数,首先要确定元素的个数,然后
再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。
解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有两个元素,故A*B
的子集共有22个。选D。
变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,
那么集合M的个数为
A)5个B)6个C)7个D)8个
变式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中必须含有元素a,b.
集合A可能是
{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共
有个.
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且
A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,
∴∴
变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且
A∩B={2},A∪B=B,求实数b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:
A∪B={x|x>-2},且A∩B={x|1
分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些
元素属于B,哪些元素不属于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-
2)∩B=ф。
综合以上各式有B={x|-1≤x≤5}
变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知
A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
点评:在解有关不等式解集一类集合问题,应注意用数形结合的
方法,作出数轴来解之。
变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求
所有满足条件的a的集合。
解答:M={-1,3},∵M∩N=N,∴NM
①当时,ax-1=0无解,∴a=0②
综①②得:所求集合为{-1,0,}
【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若
P∩Q≠Φ,求实数a的取值范围。
分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参
数分离求解。
解答:(1)若,在内有有解
令当时,
所以a>-4,所以a的取值范围是
变式:若关于x的方程有实根,求实数a的取值范围。
解答:
点评:解决含参数问题的题目,一般要进行分类讨论,但并不是
所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。
三.随堂演练
选择题
1.下列八个关系式①{0}=②=0③{}④{}⑤{0}
⑥0⑦{0}⑧{}其中正确的个数
(A)4(B)5(C)6(D)7
2.集合{1,2,3}的真子集共有
(A)5个(B)6个(C)7个(D)8个
3.集合A={x}B={}C={}又则有
(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一个
4.设A、B是全集U的两个子集,且AB,则下列式子成立的是
(A)CUACUB(B)CUACUB=U
(C)ACUB=(D)CUAB=
5.已知集合A={},B={}则A=
(A)R(B){}
(C){}(D){}
6.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集
合可表示为
{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可
表示为{1,1,2};(4)集合{}是有限集,正确的是
(A)只有(1)和(4)(B)只有(2)和(3)
(C)只有(2)(D)以上语句都不对
7.设S、T是两个非空集合,且ST,TS,令X=S那么S∪X=
(A)X(B)T(C)Φ(D)S
8设一元二次方程ax2+bx+c=0(a<0)的根的判别式,则不等式
ax2+bx+c0的解集为
(A)R(B)(C){}(D){}
填空题
9.在直角坐标系中,坐标轴上的点的集合可表示为
10.若A={1,4,x},B={1,x2}且AB=B,则x=
11.若A={x}B={x},全集U=R,则A=
12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是
13设集合A={},B={x},且AB,则实数k的取值范围是。
14.设全集U={x为小于20的非负奇数},若A(CUB)={3,7,15},
(CUA)B={13,17,19},又(CUA)(CUB)=,则AB=
解答题
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-
3},求实数a。
16(12分)设A=,B=,
其中xR,如果AB=B,求实数a的取值范围。
四.习题答案
选择题
12345678
CCBCBCDD
填空题
9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}
解答题
15.a=-1
16.提示:A={0,-4},又AB=B,所以BA
(Ⅰ)B=时,4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}时,0得a=-1
(Ⅲ)B={0,-4},解得a=1
综上所述实数a=1或a-1
本文发布于:2023-03-02 17:38:44,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1677749924113710.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:数学集合知识点.doc
本文 PDF 下载地址:数学集合知识点.pdf
留言与评论(共有 0 条评论) |