首页 > 范文

七上数学计算题带答案(七上数学计算题带答案过程)

更新时间:2023-06-06 16:18:22 阅读: 评论:0

问题:10个三角形最多将平面分成几个部分?

解:设n个三角形最多将平面分成an个部分。

n=1时,a1=2;

n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。

n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:

a3=2+2×3+4×3。

……

一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故

an=2+2×3+4×3+…+2(n-1)×3

=2+[2+4+…+2(n-1)]×3

=2+3n(n-1)=3n2-3n+2。

特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。

本文发布于:2023-06-06 16:18:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/meiwen/fec3c73698c992b9530684340f45a68b.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:七上数学计算题带答案(七上数学计算题带答案过程).doc

本文 PDF 下载地址:七上数学计算题带答案(七上数学计算题带答案过程).pdf

标签:计算题   答案   数学   过程
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图