问题:10个三角形最多将平面分成几个部分?
解:设n个三角形最多将平面分成an个部分。
n=1时,a1=2;
n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。
n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:
a3=2+2×3+4×3。
……
一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故
an=2+2×3+4×3+…+2(n-1)×3
=2+[2+4+…+2(n-1)]×3
=2+3n(n-1)=3n2-3n+2。
特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。
本文发布于:2023-06-06 16:18:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/fec3c73698c992b9530684340f45a68b.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:七上数学计算题带答案(七上数学计算题带答案过程).doc
本文 PDF 下载地址:七上数学计算题带答案(七上数学计算题带答案过程).pdf
留言与评论(共有 0 条评论) |