对于五年级上册数学的学习,课后作业是学习和巩固数学的重要环节。预习可以定在每天晚上,在完成当天作业后,再将第二天要学的新知识点简要地看一看。以下内容是t7t8美文号为您带来的7篇《五年级上册数学重点知识点》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
五年级上册数学知识点 篇一数的整除:
1、能被15整除的数一定还能被( 1、3、5 )整除。[写出所有可能]
2、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
3、六个连续偶数的和是210,这六个偶数是( 30、32、34、36、38、40 )。
4、在15、19、27、35、51、91这六个数中,与众不同的数是( 19 ),因为( 只有19是质数,其它都是合数 )。
5、两个质数的积是46,这两个质数的和是( 25 )。
解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一个质数为46÷2=23,所以2与23的和是25。
6、1992所有的质因数的和是( 88 )。
解:1992=2 2 2 3 83,所以1992所有的质因数的和是2+2+2+3+83=92。
7、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是( 9和10 )。
8、几个数的最大公因数是最小公倍数的( 因 )数,几个数的最小公倍数是最大公因数的( 倍 )数。
9、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
10、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
11、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
12、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
13、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?
解:180、45、18的最大公因数是9,当锯成的正方体木块的棱长是9厘米时,锯出的正方体木块块数最少,是(180÷9)×(45÷9)×(18÷9)=20×5×2=200块。
14、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?
解:9、6、7的最小公倍数是126,即叠成的正方体棱长最小是126厘米,至少需要(126÷9)×(126÷6)×(126÷7)=14×21×18=5292块这样的长方体木块才能叠成一个正方体。
15、同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人。参加队列训练的学生最少有多少人?
解:根据题意,学生人数除以8余6,除以10也余6,所以是8和10的最小公倍数40的倍数加6,学生最少是40+6=46人。
16、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?
解:5040=2×2×2×2×3×3×5×7=7×(2×2×2)×(3×3)×(2×5),分别是7、8、9、10岁。
长方体和正方体:
17、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
18、一个正方体的棱长扩大到原来的3倍,则这个正方体的表面积扩大到原来的( 9 )倍,体积扩大到原来的( 27 )倍。
19、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体( 8 )个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的( (2×2×6)÷(1×1×6)=4 )倍。
20、一个底面是正方形的长方体,高2分米,侧面展开后恰好是一个正方形。这个长方体的体积是多少立方分米?
解:长和宽都是2÷4=0.5分米,体积0.5×0.5×2=0.5立方分米。
21、一间教室长8米,宽6米,高4米,教室里有32个学生,平均每人占有多少空间?
解:8×6×4=192立方米,192÷32=6立方米。
22、一个无盖的木盒,从外面量长10厘米,宽8厘米,高5厘米,木板厚1厘米。这个木盒的容积是多少?
解:长10-1×2=8厘米,宽8-1×2=6厘米,高5-1=4厘米,容积8×6×4=192立方厘米。
23、把一个长、宽、高分别是5分米、3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是( )平方分米。
解:原长方体的表面积是5×3×2+5×2×2+3×2×2=62平方分米,截成两个小长方体后表面积最多增加5×3×2=30平方分米,这两个小长方体表面积之和最大是62+30=92平方分米。
24、有一个长方体,如果把它的长减少2分米,那么它就变成一个正方体,表面积就会减少48平方分米。求这个长方体的体积。
解:横截面是正方形,即宽与高相等。长方体的宽与高都是48÷4÷2=6分米,长是6+2=8分米,体积是8×6×6=288立方分米。
25、把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到多少个小正方体?表面积增加了多少平方厘米?
解:切成了(6÷2)×(6÷2)×(6÷2)=27个小正方体,表面积增加了6×6×4×3=432平方厘米。
26、两个完全一样的正方体拼成一个长方体,长方体的表面积是40平方厘米,每个小正方体的表面积是多少平方厘米?
解:小正方体的一个面是40÷(5×2)=4平方厘米,每个小正方体的表面积是4×6=24平方厘米。
27、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
解:6升=6000毫升,底面积是6000÷15=400平方厘米,苹果的体积是400×(16.5-15)=600立方厘米。
分数的意义和性质:
28、2 的分数单位是( ),它有( 37 )个这样的分数单位,再加上( 23 )个这样的分数单位等于最小的合数。
29、有分母都是7的真分数、假分数和带分数各一个,它们的大小只差一个分数单位。这三个分数分别是( , ,1 )。
30、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
31、一辆小汽车6分钟行驶9千米,行驶1千米要( )分,1分钟能行驶( 1.5 )千米。
32、 <<1,□里可以填的自然数有( )。[写出所有可能]
解: < < ,5□=50、55、60,□=10、11、12。
33、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
34、五(1)班女生占全班人数的 ,那么,男生人数占全班人数的( ),女生人数比男生人数少( )。
35、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
五年级上册数学知识点 篇二公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2
面积=长×宽字母公式:S=ab
正方形:周长=边长×4字母公式:C=4a
面积=边长×边长字母公式:S=a
平行四边形的面积=底×高字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形;
长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。因为平行四边形面积=底×高,所以三角形面积=底×高÷2
形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书,两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
方形框架拉成平行四边形,周长不变,面积变小。
合图形:转化成已学的简单图形,通过加、减进行计算。
小学五年级数学上册的重点知识点 篇三第一单元小数乘法
1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
如:1.53 表示 1.5 的 3 倍是多少或 3 个 1.5 的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中 一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
如:1.50.8 就是求 1.5 的十分之八是多少。
1.51.8 就是求 1.5 的 1.8 倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的 0 要去掉,把小数化简;小数部分位数不够时,要用 0 占位。
3、规律(1)(P9):一个数(0 除外)乘大于 1 的数,积比原来的数大;
一个数(0 除外)乘小于 1 的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质: a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc 【(a-b)c=ac-bc】
除法:除法性质: abc=a(bc)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.60.3 表示已知两个因数的积 0.6 与其中的一个因数 0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
10、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用四舍五入法保留一定的小数位数 求出商的近似数。
12、(P24、25)除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作,也可 以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、aa 可以写作 aa 或 a ,a 读作 a 的平方。 2a 表示 a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。、
20、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数因数 一个因数=积另一个因数
除法:商=被除数除数 被除数=商除数 除数=被除数商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边=
23、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=是方程的解。
第五单元多边形的面积
23、公式:
长方形:周长=(长+宽)2--【长=周长2-宽;宽= 周长 2-长】 字母公式:C=(a+b)2
面积= 面积=长宽 字母公式:S=ab
正方形:周长=边长4 字母公式:C=4a
平行四边形的面积=底高 字母公式: S=ah
三角形的面积=底高2 --【底=面积2高=面积2底】 字母公式: S=ah2
梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2
【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的`面积等于三角形面积的 2 倍,
因为长方形面积=长宽,所以平行四边形面积=底高。
因为平行四边形面积= 因为平行四边形面积=底高,所以三角形面积=底高2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的 2 倍,
因为平行四边形面积=底高,所以梯形面积=(上底+下底)高2
28、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的 2 倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
0 5 4 0 0 1
前 3 位表示邮区
前 4 位表示县(市)
最后 2 位表示投递局
35、身份证码: 18 位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
小学五年级数学上册的重点知识点 篇四统计与可能性
1、平均数=总数量÷总份数
2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
五年级上册数学重点知识点
数学广角
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
054001
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
3、身份证码:18位
130521197803010019
河北省邢台市邢台县出生日期顺序码校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
五年级上册数学重点知识点 篇五多边形的面积
1、公式:
长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽= 周长÷ 2-长】 字母公式:C=(a+b)×2
面积= 面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 --【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
2、平行四边形面积公式推导:剪拼、平移
3、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的 2 倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积= 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:旋转
5、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的 2 倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
6、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的 2 倍。
7、长方形框架拉成平行四边形,周长不变,面积变小。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
五年级上册数学知识点 篇六1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数减数=被减数-差被减数=减数+差
一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程解应用题的思路:
A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
小学五年级上册数学知识点归纳 篇七观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元 简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a?a或a? ,a?读作a的平方。2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数
一个加数=和-两一个加数
减法:差=被减数-减数
被减数=差+减数
减数=被减数-差
乘法:积=因数×因数
一个因数=积÷另一个因数
除法:商=被除数÷除数
被除数=商×除数
除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:
方程左边=……
23、方程的解是一个数;
=……解方程是一个计算过程。
=方程右边
所以,X=…是方程的解。
以上就是t7t8美文号为大家整理的7篇《五年级上册数学重点知识点》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
本文发布于:2023-06-17 06:26:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/f6cf5d2184fdb9c24b6f3b821ecbf113.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:五年级上册数学重点知识点优秀7篇.doc
本文 PDF 下载地址:五年级上册数学重点知识点优秀7篇.pdf
留言与评论(共有 0 条评论) |