人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
全等三角形的性质和判定教学反思篇一(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;
(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);
(3)能正确地将三角形的6个元素按条件的个数分成:
①一个元素:一个边或一条角对应相等。
②两个元素:两边或一边一角或两角对应相等。
③三个元素:三边或两边和一角或一边和两角或三角对应相等。
或者按:
①边(一条边或两条边或三条边分别对应相等)。
②角(一个角或两个角或三个角分别对应相等)。
③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];
(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;
(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。
基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。
全等三角形的性质和判定教学反思篇二复习课的类型很多,但目的都是帮助学生整理和贯通知识。复习课要精讲多练,但又不能把它演变成纯粹的习题课,否则效果甚微,为了能在有限的时间里得到比较有效的复习效果,我们集备组进行了反复的探讨,并结合学生层次和期中复习的综合性,选取从一个简单熟悉的图形出发,通过对它不断地叠加、变形衍生出许多新的问题,而这些问题所反映的知识又是相互联系,体现本章核心结构的,这当然要比给出不同的问题来落实重点知识好得多。另外为了解决抽象思维的不足,我们在课前准备了几何画板动态演示,以便让学生在课堂上能通过直观地观察进行联想,从课堂教学的效果来看,感觉教学设计意图在本次课中基本得到了贯彻,几何画板演示图形的旋转位置变化,不仅加深了学生对动态的理解,而且对动态问题进行静态研究提供了思路。
对一次复习课的探讨和实施过程,让我深切地感受到教师的教学设计意图、预见学生学习的困难情况、课前采取的应对策略、实施教学时对重点和难点的认识等等都直接会影响到一堂课的效果,这些都需要我们在课前进行深入地思考和研讨。
1、本节课教学上我采用以引导发现法为主,并以讨论法、演示法相结合,以问题导入,循序渐近,由浅入深,从单一到综合,以逐步提高学生的应用能力。
2、多媒体辅助教学既能够直观、生动地反映图形,增加课堂的容量,又有利于突出重点、分散难点,增强了教学条理性,形象性,更好地提高了课堂效率。
3、教学中以多种形式(组合条件、添加条件、作全等三角形、练习等)强化学生对三角形全等判定的理解,并起到了一定的效果。
4、真正关注到中等偏下的学生,课堂中设计的问题有三分之二是针对这一部分学生,并在课堂中也正是让他们表现的。
5、营造了和谐轻松的课堂氛围,通过动手活动、分组交流归纳总结全等三角形的各种常见形式,这个环节的设计调动了学生的'积极性,让每一学生都获得了成功的喜悦。
1、题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
2、出示了几道中考题,虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,对中考命题方向进行研究和探索,仅是为做题而做题。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
全等三角形的性质和判定教学反思篇三本节课教学让学生通过观察和动手操作获取知识,激发学生的学习兴趣。改变了传统的“传递—接受”式教学,尝试用“问题—探究”的教学方法,教学过程中注重学习方法、思维方法、探索方法,让学生尽可能的经历交流与合作,通过互动体验认识数学和数学思想,培养与他人合作的意识和态度。产生学习数学的兴趣和自信心,让学生在互动中学到数学的知识和经验、思想和方法。
在介绍全等形和全等三角形对应元素的概念时,我设计不同的图形变换使它们完全重合,如:孙悟空飞奔接着翻跟头等。旨在学生直观感受概念的内涵。
在学习全等三角形相关概念、探索全等三角形性质以及运用符号表示全等三角形时,通过学生动手操作学具来获取这些知识,加深对“全等三角形”“对应元素”“对应顶点写在对应的位置上”含义的理解。在这里使我意外的是,很多学生采用多种图形变换使两个全等三角形完全重合并找出对应元素。
在找全等三角形的对应元素时部分学生还没找对,是因为这部分学生对“对应元素”的概念不清,在操作的过程中观察不仔细。针对这部分学生教师应该带着他们一起操作两个全等三角形重合的过程,使他们深刻体会“对应元素”。
全等三角形的性质和判定教学反思篇四本节课的目标是应用三角形全等的条件(sas)证明简单的三角形全等问题,进而得出线段或角相等。
本节课探索三角形全等的判定方法二,是本章的重点也是难点。教材看似简单,仔细研究后才发现对八年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,以及让学生判定时注意寻找条件的时候是两边夹角。通过让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。
反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。在课题的引入方面,以学生动手做、裁剪三角形,这既复习了全等三角形的定义、判定方法一,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。
2、把课堂充分地让给了学生。上课时我常对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导学生让它们发现问题并通过动手操作、交流讨论来解决问题。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作、画图,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边公理”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“sas”。
但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得探讨。
2、课堂上学生的操作应努力做到学生自发生成的,而不是让老师提议,应换为自发地比较更好。
3、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍是不理解。
全等三角形的性质和判定教学反思篇五对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才的以发展。
全等三角形的性质和判定教学反思篇六复习这部分知识的设计指导思想,旨在通过学生自主归纳,整理回忆,从而形成知识链,这正是数学新课标倡导的理念,在教学过程中,例题的选择非常重要,一个好的例题能激发学生的兴趣,合理的变式会激起学时的探索欲望。所以,精选例题,合理组织教学内容,是我上复习课的宗旨。力求让学生通过复习,在主动获取知识,理解数学的思维方法,思维。
复习要对以前多节新课中的知识点或数学思想方法进行压缩整理,所以要制订好复习课的复习目标。首先,选择合适的知识范围非常重要。其次,应确定对所选知识点中重点的复习深度,过易会让学生索然无味,过难会让学生畏惧前行,失去信心。我对这节课的难度把握是保全突尖,教学流程本身有梯度,例题与配套变式也有梯度。不过对于例3“求证两线段相等”这个问题既需要添加辅助线,又要连续两次证全等。问题的梯度设置过大,许多学生还观察不出。假如这样设置①证全等②证线段相等,效果应该会更好。
这一部分的设计是整堂复习课的灵魂,一个好的例题能激起学生学习数学的兴趣,合理的变式会激起学生探索的欲望。通过变式训练,能让学生掌握解决这一类问题的基本方法,起到举一反三、触类旁通的作用。在设计上,分三个层次:“分析与归纳中的5题借助图形在分红隐含的条件,直接判断全等;理解与运用中的例1、例2,需要将间接条件转化成全等的直接条件,才能判断;最高层次:例3当条件不充分时,要有目的地添加辅助线。在本题中,就是要构造全等形。并连续两次证全等。
在课堂上对极少数学习有困难的学生关注不够。
本文发布于:2023-04-23 16:40:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/f40774af3c14657c34fdcdac2bc66889.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:最新全等三角形的性质和判定教学反思(6篇).doc
本文 PDF 下载地址:最新全等三角形的性质和判定教学反思(6篇).pdf
留言与评论(共有 0 条评论) |