经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。t7t8美文号的小编精心为您带来了9篇《八年级下册数学人教版知识点》,希望朋友们参阅后能够文思泉涌。
数学基础知识点 篇一平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
八年级下册数学知识点 篇二分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mc m(a+b+c)
4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。 找公因式的一般步骤:
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的。
(4)所有这些因式的乘积即为公因式。
四、分解因式的一般步骤为:
(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式。
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
(3)每一个多项式都要分解到不能再分解为止。
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。 分解因式的方法:1、提公因式法。2、运用公式法。
初二下册数学知识点 篇三第五章 分式与分式方程
1、认识分式
① 一般地,用AB表示两个整式。A÷B可以表示成的形式,如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母。对于任意一个分式,分母都不能为零
② 分式的基本性质:分式的分子与分母都乘以或除以同一个不为零的整式,分式的值不变
③ 把一个分式的分子,分母的公因式约去,这种变形称为分式的约分
④ 在一个分式中,分子分母已经没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果称为最简分式或者整式。
2、分式的乘除法
① 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除数相乘
3、分式的加减法
① 同分母的分式相加减,分母不变,把分子相加减
② 根据分式的基本性质,异分母的分式可以化为同分母的分式。这一过程称为分式的通分。
③ 为了计算方便,异分母分式通分时,通常采取最简单的公分母,简称最简公分母,作为它们的共同分母
④ 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算
4、分式方程
① 分母中含有未知数的方程叫做分式方程
② 增跟:一个数使原分式方程的分母为零,原因是,我们在方程的两边同乘以一个使分母为零的整式
八年级下册数学人教版知识点 篇四一次函数知识点
(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
(二)一次函数的图像及性质
1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3、正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b<0时,直线通过一、三、四象限;
当k<0,b>0时,直线通过一、二、四象限;
当k<0,b<0时,直线通过二、三、四象限;
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
分解因式知识点
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的。(4)所有这些因式的乘积即为公因式。
四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式。(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。(3)每一个多项式都要分解到不能再分解为止。
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
分解因式的方法:1、提公因式法。2、运用公式法。
提高数学成绩的方法 篇五1、要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。
2、初中生想要提高数学成绩就一定要重视基础,千里之堤始于砖泥,不重视基础的下场就是你觉得自己的数学学得很好成绩会很好,但是在你成绩出来的时候会低于你的预期很多。很多初中生经常是知道怎么演算就算了,而不去认真的做几遍,好高骛远,总想去冲击难题,结果连考试中最基础的方程都会错。
3、要抓好几个提高数学成绩的必要条件。数学运算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
初二数学下册知识点归纳 篇六第一章分式
1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3整数指数幂的加减乘除法
4分式方程及其解法
第二章反比例函数
1反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2反比例函数在实际问题中的应用
第三章勾股定理
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
初二下数学知识总结 篇七第四章 因式分解
1、因式分解
① 把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式
2、提公因式法
① 多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式
② 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。从而将多项式化成两个因式乘积的形式。这种因式分解的方法叫做提公因式法
3、公式法
① A2-b2=(a+b)(a-b)
② 当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解
③ a2+2ab+b2=(a+b)2 。a2-2ab+b2=(a-b)2
④ 根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解叫做公式法
初二下册数学知识点 篇八第三章 图形的平移和旋转
1、图形的平移
① 在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小
② 一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等
③ 一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的
2、图形的旋转
① 在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小
② 一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等
3、中心对称
① 如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心
② 成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分
③ 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心
4、简单的图案设计
人教版初二数学下册知识点 篇九证明
一、对事情作出判断的句子,就叫做命题。 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题。图形的作法不是命题。 每个命题都有条件(condition)和结论(conclusion)两部分组成。 条件是已知的事项,结论是由已知事项推断出的事项。 一般地,命题都可以写成“如果……,那么……”的形式。其中“如果”引出的部分是条件,“那么”引出的部分是结论。 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论。这种例子称为反例。
二、三角形内角和定理:三角形三个内角的和等于180度。
1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角。一般需要作辅助线。既可以作平行线,也可以作一个角等于三角形中的一个角。
2、三角形的外角与它相邻的内角是互为补角。
三、三角形的外角与它不相邻的内角关系是:
(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
四、证明一个命题是真命题的基本步骤是:
(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。 在证明时需注意:
(1)在一般情况下,分析的过程不要求写出来。
(2)证明中的每一步推理都要有根据。 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。
常考知识点:1、三角形的内角和定理,及三角形外角定理。2两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。
上面内容就是t7t8美文号为您整理出来的9篇《八年级下册数学人教版知识点》,能够给予您一定的参考与启发,是t7t8美文号的价值所在。
本文发布于:2023-06-17 05:04:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/caf27b99a4044c672b5fe9310658a215.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:八年级下册数学人教版知识点优秀9篇(八年级下册数学人教版知识点优秀9篇讲解).doc
本文 PDF 下载地址:八年级下册数学人教版知识点优秀9篇(八年级下册数学人教版知识点优秀9篇讲解).pdf
留言与评论(共有 0 条评论) |