首页 > 范文

2023年高二会考物理必考知识点公式(十篇)

更新时间:2023-04-17 23:11:18 阅读: 评论:0

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

高二会考物理必考知识点公式篇一

1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。

2、物体可以看成质点的条件

条件:

①研究的物体上个点的运动情况完全一致。

②物体的线度必须远远的大于它通过的距离。

(1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点

(2)平动的物体可以视为质点

平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。

小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。

参考系

1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。

2、对参考系的理解:

(1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。

(2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。

(3)比较物体的运动,应该选择同一参考系。

(4)参考系可以是运动的物体,也可以是静止的物体。

小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。

坐标系

1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。

2、坐标系分类:

(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。

(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。

高二会考物理必考知识点公式篇二

弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)3、弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。

滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

说明:摩擦力的产生是由于物体表面不光滑造成的。

(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡

(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上

(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成

①确定研究对象;

②分析受力情况;

③建立适当坐标;

④列出平衡方程

1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力

2.平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态.

说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零.

3.共点力作用下物体的平衡条件:合力为零,即0

说明;

①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;

②物体受到n个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(n-1)个力的合力等大反向。

③若采用正交分解法求平衡问题,则其平衡条件为:fx合=0,fy合=0;

④有固定转动轴的物体的平衡条件

学过物理学的人都会知道牛顿第三定律,此定律主要说明了作用力和反作用的关系。在对一个物体用力的时候同时会受到另一个物体的反作用力,这对力大小相等,方向相反,并且保持在一条直线上。

高二会考物理必考知识点公式篇三

万有引力定律及其应用

1.万有引力定律:引力常量g=6.67×n?m2/kg2

2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)

3.万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g)

(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)

(2)重力=万有引力

地面物体的重力加速度:mg=gg=g≈9.8m/s2

高空物体的重力加速度:mg=gg=g<9.8m/s2

4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。

由mg=mv2/r或由==7.9km/s

5.开普勒三大定律

6.利用万有引力定律计算天体质量

7.通过万有引力定律和向心力公式计算环绕速度

8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)

功、功率、机械能和能源

1.做功两要素:力和物体在力的方向上发生位移

2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(j)

3.物体做正功负功问题(将α理解为f与v所成的角,更为简单)

(1)当α=90度时,w=0.这表示力f的方向跟位移的方向垂直时,力f不做功,

如小球在水平桌面上滚动,桌面对球的支持力不做功。

(2)当α

如人用力推车前进时,人的推力f对车做正功。

(3)当α大于90度小于等于180度时,cosα<0,w<0.这表示力f对物体做负功。

如人用力阻碍车前进时,人的推力f对车做负功。

一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6j的功,可以说成球克服重力做了6j的功。说了“克服”,就不能再说做了负功

4.动能是标量,只有大小,没有方向。表达式

5.重力势能是标量,表达式

(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

6.动能定理:

w为外力对物体所做的总功,m为物体质量,v为末速度,为初速度

解答思路:

①选取研究对象,明确它的运动过程。

②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。

③明确物体在过程始末状态的动能和。

④列出动能定理的方程。

7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)

解题思路:

①选取研究对象----物体系或物体

②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

④根据机械能守恒定律列方程,进行求解。

8.功率的表达式:,或者p=fv功率:描述力对物体做功快慢;是标量,有正负

9.额定功率指机器正常工作时的输出功率,也就是机器铭牌上的标称值。

实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

10、能量守恒定律及能量耗散

高二会考物理必考知识点公式篇四

力的分解是力的合成的逆运算,同样遵循平行四边形定则(三角形法则,很少用):把一个已知力作为平行四边形的对角线,那么与已知力共点的平行四边形的两条邻边就表示已知力的两个分力。然而,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形。

为此,在分解某个力时,常可采用以下两种方式:

①按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小。

②根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量。

关于第②种分解方法,我们将在这里重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果。

所以,可将斜向上的拉力沿水平向前和竖直向上两个方向分解。斜面上物体重力的分解所示,在斜面上铺上一层海绵,放上一个圆柱形重物,可以观察到重物下滚的同时,还能使海绵形变有压力作用,从而说明为什么将重力分解成f1和f2这样两个分力。

1.同一直线上力的合成同向:f=f1+f2,反向:f=f1-f2(f1>f2)

2.互成角度力的合成:

f=(f12+f22+2f1f2cosα)1/2(余弦定理)f1⊥f2时:f=(f12+f22)1/2

3.合力大小范围:|f1-f2|≤f≤|f1+f2|

4.力的正交分解:fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)f1与f2的值一定时,f1与f2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高二会考物理必考知识点公式篇五

一、力:力是物体间的相互作用。

1、力的国际单位是牛顿,用n表示;

2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

3、力的示意图:用一个带箭头的线段表示力的方向;

4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

(1)重力:由于地球对物体的吸引而使物体受到的力;

(a)重力不是万有引力而是万有引力的一个分力;

(b)重力的方向总是竖直向下的(垂直于水平面向下)

(c)测量重力的仪器是弹簧秤;

(d)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

(a)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

(b)弹力包括:支持力、压力、推力、拉力等等;

(c)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

(d)在弹性限度内弹力跟形变量成正比;f=kx

(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

(a)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

(b)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

(c)滑动摩擦力的大小f滑=μfn压力的大小不一定等于物体的重力;

(d)静摩擦力的大小等于使物体发生相对运动趋势的外力;

(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

(a)合力与分力的作用效果相同;

(b)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

(c)合力大于或等于二分力之差,小于或等于二分力之和;

(d)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

二、矢量:既有大小又有方向的物理量。

如:力、位移、速度、加速度、动量、冲量

标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量

三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

2、在n个共点力作用下物体处于`平衡状态,则任意第n个力与(n-1)个力的合力等大反向;

3、处于平衡状态的物体在任意两个相互垂直方向的合力为零;

一、机械运动:一物体相对其它物体的位置变化,叫机械运动;

1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6、速度是表示质点运动快慢的物理量;

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7、加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

二、匀变速直线运动的规律:

1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3、推论:2as=vt2-v02

4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=at2

5、初速度为零的匀加速直线运动:前1秒,前2秒,位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒的位移与时间的关系是:位移之比等于奇数比。

三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推论:2gh=vt2

一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

2、力是该变物体速度的原因;

3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

4、力是产生加速度的原因;

二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

1、一切物体都有惯性;

2、惯性的大小由物体的质量唯一决定;

3、惯性是描述物体运动状态改变难易的物理量;

三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

1、数学表达式:a=f合/m;

2、加速度随力的产生而产生、变化而变化、消失而消失;

3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1n;

四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

1、作用力和反作用力同时产生、同时变化、同时消失;

2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

一、曲线运动:质点的运动轨迹是曲线的运动;

1、曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

2、、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上,且轨迹向其受力方向偏折。

3、曲线运动的特点:

4、曲线运动一定是变速运动;

5、曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

6、力的作用:

(1)力的方向与运动方向一致时,力改变速度的大小;

(2)力的方向与运动方向垂直时,力改变速度的方向;

(3)力的方向与速度方向既不垂直,又不平行时,力既搞变速度的大小又改变速度的方向;

二、运动的合成和分解:

1、判断和运动的方法:物体实际所作的运动是合运动

2、合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

3、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

三、平抛运动:被水平抛出的物体在在重力作用下所作的运动叫平抛运动;

1、平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

2、水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

3、求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

四、匀速圆周运动:质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动;

1、线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

2、角速度的大小等于质点转过的角度除以所用时间:ω=φ/t

3、角速度、线速度、周期、频率间的关系:

(1)v=2πr/t; (2) ω=2π/t; (3)v=ωr; (4)、f=1/t;

4、向心力:

(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

(2)方向:总是指向圆心,与速度方向垂直。

(3)特点:①只改变速度方向,不改变速度大小②是根据作用效果命名的。

(4)计算公式:f向=mv2/r=mω2r

5、向心加速度:a向= v/r=ωr

五、开普勒的三大定律:

1、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

2、开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;公式:r3/t2=k;

说明:(1)r表示轨道的半长轴,t表示公转周期,k是常数,其大小之与太阳有关;

(2)当把行星的轨迹视为圆时,r表示愿的半径;

(3)该公式亦适用与其它天体,如绕地球运动的卫星;

六、万有引力定律:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.

1、计算公式:f=gmm/r2

2、解决天体运动问题的思路:

(1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;

(2)应用在地球表面的物体万有引力等于重力;

(3)如果要求密度,则用m=ρv,v=4πr3/3

一、功:功等于力和物体沿力的方向的位移的乘积;

1、计算公式:w=fs;

2、推论:w=fscosθ, θ为力和位移间的夹角;

3、功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

二、功率:是表示物体做功快慢的物理量;

1、求平均功率:p=w/t;

2、求瞬时功率:p=fv,当v是平均速度时,可求平均功率;

3、功、功率是标量;

三、功和能间的关系:功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

四、动能定理:合外力做的功等于物体动能的变化。

1、数学表达式:w合=mvt2/2-mv02/2

2、适用范围:既可求恒力的功亦可求变力的功;

3、应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

4、应用动能定理解题的步骤:

(1)对物体进行正确的受力分析,求出合外力及其做的功;

(2)确定物体的初态和末态,表示出初、末态的动能;

(3)应用动能定理建立方程、求解

五、重力势能:物体的重力势能等于物体的重量和它的速度的乘积。

1、重力势能用ep来表示;

2、重力势能的数学表达式: ep=mgh;

3、重力势能是标量,其国际单位是焦耳;

4、重力势能具有相对性:其大小和所选参考系有关;

5、重力做功与重力势能间的关系

(1)物体被举高,重力做负功,重力势能增加;

(2)物体下落,重力做正功,重力势能减小;

(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

六、机械能守恒定律:在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

1、机械能守恒定律的适用条件:只有重力或弹簧弹力做功;

2、机械能守恒定律的数学表达式:

3、在只有重力或弹簧弹力做功时,物体的机械能处处相等;

4、应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解;

一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;

2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;

3、回复力:使振动物体回到平衡位置的力;

(1)回复力的方向始终指向平衡位置;

(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;

4、机械振动的特点:

(1)往复性;

(2)周期性;

二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;

(1)回复力的大小与位移成正比;

(2)回复力的方向与位移的方向相反;

(3)计算公式:f=-kx;

如:音叉、摆钟、单摆、弹簧振子;

三、全振动:振动物体如:从0出发,经a,再到o,再到a/,最后又回到0的周期性的过程叫全振动。

例1:从a至o,从o至a/,是一次全振动吗?

例2:振动物体从a/,出发,试说出它的一次全振动过程;

四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用a表示;

2、最大回复力f大=ka;

3、物体完成一次全振动的路程为4a;

4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;

五、周期:振动物体完成一次全振动所用的时间;

1、t=t/n (t表示所用的总时间,n表示完成全振动的次数)

2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于t/4;

六、频率:振动物体在单位时间内完成全振动的次数;

1、f=n/t;

2、f=1/t;

3、固有频率:由物体自身性质决定的频率;

七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;

2、若从最远点开始计时,其图像为余弦曲线;

3、简谐运动图像的作用:

(1)确定简谐运动的周期、频率、振幅;

(2)确定任一时刻振动物体的位移;

(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;

(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动

4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;

八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

1、当单摆的摆角很小(小于5度)时,所作的运动是简谐运动;

2、单摆的周期公式:t=2π(l/g)1/2

3、单摆在摆动过程中的能量关系:在平衡位置动能最大、重力势能最小;在最远点动能为零,重力势能最大;

九、机械波:机械振动在介质中的传播就形成了机械波。

1、产生机械波的条件:

(1)有波源; (2)有介质;

2、机械波的实质:机械波只是机械振动这种运动形式的传播,介质本身不会沿播的传播方向移动;

3、波在传播时,各质点所作的运动形式:在波的传播过程中,各质点只在平衡位置两侧作往复运动,并不随波的前进而前移。

4、波的作用:

(1)传播能量; (2)传播信息;

5、机械波的种类:

(1)横波:质点的振动方向和播的传播方向垂直,这样的波叫横波。

如:水波、绳波、人浪等等;

(a)波峰:凸起的最高点叫波峰;

(b)波谷:凹下的最低点叫波谷;

(2)纵波:质点的振动方向和波的传播方向平行的波叫纵波;

(a)疏部:质点分布最稀疏的部分叫疏部;

(b)密部:质点分布最密集的部分叫密部;

(c)声波是纵波;

6、机械波的图像:建立一直角坐标系,横轴表示各质点的位置,纵轴表示各质点偏离平衡位置的位移,联接各点(x,y)所成的曲线就是机械波的图像; 机械波的图像是正弦曲线;

7、波长:两个相邻的,在振动过程中对平衡位置位移总是相等的质点间的距离叫波长;

(1)波长用 λ 表示;

(2)两个相邻的波峰或波谷间的距离等于波长;

8、介质中各质点的振动频率(周期)等于波源的振动频率(周期),这个频率就叫波动频率(周期);在一个周期内各质点传播的距离等于一个波长;

9、波速、波在介质中的传播速度叫波速;

(1)波速等于单位时间内波峰或波谷(密部或疏部)向前移动的距离;

(2)波在介质中是匀速传波的(波速恒定不变);

10、波长、波速、频率间的关系;v=λf

11、机械波在介质中的传播速度只与介质有关;

12、在波形图中质点向相邻的前一质点所在位置运动;

一、物质是由分子组成的;

1、在物理上我们把所有够成物质的微粒(分子、原子、离子)统称分子;

2、测量分子大小的方法:单分子油膜法:取一滴油滴,让其在水面上尽可能的散开,形成一层单分子油膜,则油滴的体积除以油膜的面积就是油分子的直径。d=vo/s

3、分子直径的数量级为10-10m;

二、阿伏加德罗常数:1mol物质所含的分子数叫阿伏加德罗常数。

1、阿伏加德罗常数用na来表示: na=6.02×1023;

2、阿伏加德罗常数是联系宏观物质(摩尔体积、摩尔质量)和微观物质(分子质量、分子体积)的桥梁;

(1)v0=vm/ na

(2)m0=m/ na;

(3)n=n× na

3、分子质量的数量级:10kg;

三、构成物质的分子在不停的作无规则运动;

四、证明分子在不停的作无规则运动的实验:

1、扩散现象:两个不同的物体相互接触,彼此进入对方的现象;

(1)其实质:是分子的运动;

(2)温度越高扩散越快;二物质密度(浓度)相差越大,扩散越快;

2、布朗运动:悬浮在液体或气体中的细小微粒所作的无规则运动;

(1)布朗运动的实质:布朗运动并不是分子的运动,而是分子作无规则运动的反应;

(2)布朗运动的特点:微粒越小,温度越高,布朗运动越剧烈;

(3)布朗运动是无规则的运动;

(4)布朗运动发生的原因:微粒各方向所受分子的碰撞不均,使微粒各方向受力不等,从而使微粒无规则的运动;

五、温度的微观物理意义:温度是分子平均动能的标志;

六、热运动:分子的无规则运动叫热运动。

七、构成物质的分子间有间隙。

八、构成物质的分子间有相互作用的引力和斥力;

1、平衡位置:当分子间的引力等于斥力时,分子所处的位置;此时分子间的距离为r0;

2、当分子间的距离r=r0 时,引力等于斥力,分子力为零;

3、当r﹤r0时, 引力小于斥力,分子力表现为斥力;

4、当r﹥r0分子间的距离时,引力大于斥力,分子力表现为引力;

5、分子间的引力和斥力始终同是存在;

6、分子间的引力和斥力都随分子间距离的增加而减小,但引力减小的快;随距离的减小而增大,斥力增大得快;

九、内能:物体中所有分子动能和分子势能的总合叫内能;

1、一切物体都有内能;

2、物体的内能与温度(分子动能)体积(分子势能)物质的量有关;

3、理想状态下的气体的内能与其体积无关(分子势能始终未零)

十、改变内能的两种方式:

1、做功;

2、热传递;

(1)传导; (2)对流;(3)辐射;

十一、热力学第一定律:物体内能的变化量等于外界对物体做的功和物体从外界吸收的热量之和;

数学表达式:△u=q+w;

1、吸热,q为正;放热q为负;

2、外界对物体做正功w为正,外界对物体做负功(物体对外界做正功)w为负; 十二、能量守恒定律:能量既不会凭空产生,亦不会凭空消失,只能从一种形式转化成别的形式,或者从一个物体转移到别的物体,在转化和转移中,其总量不变;

十三、热力学第二定律:

1、不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化;

2、不可能使热量由低温物体传到高温物体而不引起其它变化;

3、本质:热理学第二定律揭示了有大量分子参与的宏观过程都有方向性;

十四、热力学温度:以-273.15℃这个下限为起点的温度。

1、摄氏温度与热力学温度间的关系:t=t+273.15k

2、温度的国际单位是开尔文k;

3、热力学第三定律:热力学零度不可达到;

十五、分子动能:分子由于作物规则运动而具有的能。

1、分子的平均动能:物体所有分子的动能的平均值。

2、温度是分子平均动能的标志;

3、分子动能由温度、物质的量共同决定

十六、分子势能:分子间由于有相互作用力而具有的能。

1、当r﹤r0时,r变大,斥力作正功,分子势能减小;

2、当r﹥r0时,变大,引力作负功,分子势能增大;

3、当距离r=r0 时,分子势能最小;

4、物体的分子势能与物体的体积,物质的量有关;

十七、能量的转换和守恒定律:能量既不会凭空产生,亦不会凭空消失,它只能从一种形式转化成另一种形式,或者从一个物体转移到别的物体;在转化和转移过程中其总量不变;

十八、气体压强的特点:

1、气体向各个方向的压强相等;

如:我们气球时候各个方向所受压力相等;

2、产生气体压强的原因是气体分子的碰撞而产生的;

十九、格拉伯龙方程:pv=nrt

1、在温度一定是,体积小强于大

2、在压强一定时,温度高,体积大;

3、在体积一定时,温度高,压强大;

一、三种产生电荷的方式:

1、摩擦起电:

(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

(3)实质:电子从一物体转移到另一物体;

2、接触起电:

(1)实质:电荷从一物体移到另一物体;

(2)两个完全相同的物体相互接触后电荷平分;

(3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

3、感应起电:把电荷移近不带电的.导体,可以使导体带电;

(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

(2)实质:使导体的电荷从一部分移到另一部分;

(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

4、电荷的基本性质:能吸引轻小物体;

二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

三、元电荷:一个电子所带的电荷叫元电荷,用e表示。

1、e=1.6×10-19c;

2、一个质子所带电荷亦等于元电荷;

3、任何带电物体所带电荷都是元电荷的整数倍;

四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,

1、计算公式:f=kq1q2/r2 (k=9.0×109n.m2/kg2)

2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)

3、库仑力不是万有引力;

五、电场:电场是使点电荷之间产生静电力的一种物质。

1、只要有电荷存在,在电荷周围就一定存在电场;

2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;

3、电场、磁场、重力场都是一种物质

六、电场强度:放入电场中某点的电荷所受电场力f跟它的电荷量q的比值叫该点的电场强度;

1、定义式:e=f/q;e是电场强度;f是电场力;q是试探电荷;

2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

3、该公式适用于一切电场; 4、点电荷的电场强度公式:e=kq/r2

七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和; 解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。

1、电场线不是客观存在的线;

2、电场线的形状:电场线起于正电荷终于负电荷;g:用锯木屑观测电场线.

(1)只有一个正电荷:电场线起于正电荷终于无穷远;

(2)只有一个负电荷:起于无穷远,终于负电荷;

(3)既有正电荷又有负电荷:起于正电荷终于负电荷;

3、电场线的作用:

(1)表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);

(2)表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

4、电场线的特点:

(1)电场线不是封闭曲线;

(2)同一电场中的电场线不向交;

九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;

1、匀强电场的电场线是一簇等间距的平行线;

2、平行板电容器间的电是匀强电场;场

十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功wab与电荷量q的比值叫电势差,又名电压。

1、定义式:uab=wab/q;

2、电场力作的功与路径无关;

3、电势差又命电压,国际单位是伏特;

十一、电场力作功:电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;

1、电势具有相对性,和零势面的选择有关;

2、电势是标量,单位是伏特v;

3、电势差和电势间的关系:uab= φa -φb;

4、电势沿电场线的方向降低;电场力要作功,则两点电势差不为零,就不是等势面;

5、相同电荷在同一等势面的任意位置,电势能相同;

原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;

6、电场线总是由电势高的地方指向电势低的地方;

7、等势面的画法:相另等势面间的距离相等;

十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

1、数学表达式:u=ed;

2、该公式的使适用条件是,仅仅适用于匀强电场;

3、d是两等势面间的垂直距离;

十三、电容器:储存电荷(电场能)的装置。

1、结构:由两个彼此绝缘的金属导体组成;

2、最常见的电容器:平行板电容器;

十四、电容:电容器所带电荷量q与两电容器量极板间电势差u的比值;用“c”来表示。

1、定义式:c=q/u;

2、电容是表示电容器储存电荷本领强弱的物理量;

3、国际单位:法拉 简称:法,用f表示

4、电容器的电容是电容器的属性,与q、u无关;

十五、平行板电容器的决定式:c=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×10n.m/c;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积)

1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

2、当电容器未与电路相连通时电容器两板所带电荷量不变;

十六、带电粒子的加速:

1、条件:带电粒子运动方向和场强方向垂直,忽略重力;

2、原理:动能定理——电场力做的功等于动能的变化:w=uq=1/2mvt2-1/2mv02;

3、推论:当初速度为零时,uq=1/2mvt2;

4、使带电粒子速度变大的电场又名加速电场;

一、电流:电荷的定向移动行成电流。

1、产生电流的条件:

(1)自由电荷; (2)电场;

2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;

注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;

3、电流的大小:通过导体横截面的电荷量q跟通过这些电量所用时间t的比值叫电流i表示;

(1)数学表达式:i=q/t;

(2)电流的国际单位:安培a

(3)常用单位:毫安ma、微安ua;(4)1a=103ma=106ua

二、欧姆定律:导体中的电流跟导体两端的电压u成正比,跟导体的电阻r成反比;

1、定义式:i=u/r;

2、推论:r=u/i;

3、电阻的国际单位时欧姆,用ω表示;1kω=10ω,1mω=10ω;

4、伏安特性曲线:

三、闭合电路:由电源、导线、用电器、电键组成;

1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用e表示;

2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用r表示;其两端电压叫外电压;

3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;

4、电源的电动势等于内、外电压之和;e=u内+u外;u外=ri;e=(r+r)i

四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;

1、数学表达式:i=e/(r+r)

2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;

3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;

六、超导:导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导。

一、磁场:

1、磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力f跟电流i和导线长度l的乘积的比值,叫磁感应强度。b=f/il

2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉 t, 1t=1n/a.m

六、安培力:磁场对电流的作用力;

1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力f等于磁感应强度b、电流i和导线长度l三者的乘积。

2、定义式f=bil(适用于匀强电场、导线很短时)

3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;

八、磁场对电流有力的作用;

九、电流和电流之间亦有力的作用;

(1)同向电流产生引力;

(2)异向电流产生斥力;

十、分子电流假说:所有磁场都是由电流产生的;

十一、磁性材料:能够被强烈磁化的物质叫磁性材料:

(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、

(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

十二、洛伦兹力:磁场对运动电荷的作用力,叫做洛伦兹力

1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力f一定和b、v决定的平面垂直。

(2)洛仑兹力只改变速度的方向而不改变其大小

(3)洛伦兹力永远不做功。

2、洛伦兹力的大小

(1)当v平行于b时:f=0

(2)当v垂直于b时:f=qvb

一、磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度b和平面面积s的乘积叫磁通量;

1、计算式: φ=bs(b⊥s)

2、推论:b不垂直s时, φ=bssinθ

3、磁通量的国际单位:韦伯,wb;

4、磁通量与穿过闭合回路的磁感线条数成正比;

5、磁通量是标量,但有正负之分;

二、电磁感应:穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生,这种现象叫电磁感应现象,产生的电流叫感应电流;

注:判断有无感应电流的方法:

1、闭合回路;

2、磁通量发生变化;

三、感应电动势:在电磁感应现象中产生的电动势;

四、磁通量的变化率:等于磁通量的变化量和所用时间的比值; △φ/t

1、磁通量的变化率是表示磁通量的变化快慢的物理量;

2、磁通量的变化率由磁通量的变化量和时间共同决定;

3、磁通量变化率大,感应电动势就大;

五、法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比;

1、定义式: e=n△φ/△t(只能求平均感应电动势);

2、推论; e=blvsinaθ(适用导体切割磁感线,求瞬时感应电动势,平均感应电动势)

(1)v⊥l,l⊥b, θ为v与b间的夹角;

(2) v⊥b,l⊥b, θ为v与l间的夹角

(3) v⊥b,l⊥v, θ为b与l间的夹角

3、穿过线圈的磁通量大,感应电动势不一定大;

4、磁通量的变化量大,感应电动势不一定大;

5、有感应电流就一定有感应电动势;有感应电动势,不一定有感应电流;

六、右手定则(判断感应电流的方向):伸开右手,让大拇指和其余四指共面、且相互垂直,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动方向,四指指向感应电流的方向。

一、麦克斯韦的电磁场理论:

1、不仅电荷能产生电场,变化的磁场亦能产生电场;

2、不仅电流能产生磁场,变化的电场亦能产生磁场;

二、对麦氏理论的理解

1、稳恒的电场周围没有磁场;

2、稳恒的磁场周围没有电场

3、均匀变化的电场产生稳恒的磁场;

4、均匀变化的磁场产生稳恒的电场;

5、非均匀变化的电场、磁场可以相互转化;

三、电磁场:变化的电场和变化的磁场相互联系,形成一个不可分割的统一场,这就是电磁场;

四、电磁波:电磁场由近及远的传播,就形成了电磁波;

1、有效向外发射电磁波的条件:

(1)要有足够高的频率;

(2)电场、磁场必须分散到尽可能大的空间(开放电路)

2、电磁场的性质:

(1)电磁波是横波;

(2)电磁波的速度v=3.0*108;

(3)遵守波的一切性质;波的衍射、干涉、反射、折射;

(4)电磁波的传播不需要介质

一、光在同种均匀介质中沿直线传播;

1、光线:表示光传播路线的直线;

2、光束:在真空中光的传播速度c=3.0×108m/s;

3、光的折射定律:光从一介质进入另一介质时,传播路线要发生改变,入射光线和折射光线分居法线的两侧;从光密质进入光疏质时,入射角小于折射角;

(1)入射角:图射光线和法线间的加角;

(2)折射角:折射光线和法线间的夹角;

(3) 折射率n=c/v=sini/sinr(大的除以小的);

4、光密质:折射率大的介质;

5、光疏质:折射率较大的介质;

二、全反射:光从光密质进入光疏质时,当入射角大于零界角时,只有反射光线没有折射光线的现象;

1、发生全反射的条件:(1)光从光密质进入光疏质;(2)入射角大于临界角;

2、临界角:当折射角等于90°时的入射角;sinac=1/n;

3、特例:海市蜃楼、光导纤维;

三、光的色散:当白光经过三棱镜后能形成彩色个光带,这个现象叫色散;

1、发生色散后在光屏上从上至下,依次是红、橙、黄、绿、蓝、靛、紫;

2、从红到紫光的频率由小到大;波长由大到小;

3、在同种介质中,折射率由小到大;传播速度由大到小;

4、从红光到紫光衍射现象逐渐减弱;

一、波的干涉和衍射:

1、干涉:两列频率相同的波相互叠加,在某些地方振动加强,某些地方振动减弱,这种现象叫波的干涉;

(1)发生干涉的条件:两列波的频率相同;

(2)波峰与波峰重叠、波谷与波谷重叠振动加强;波峰与波谷重叠振动减弱;

(3)振动加强的区域的振动位移并不是一致最大;

2、衍射:波绕过障碍物,传到障碍物后方的现象,叫波的衍射;(隔墙有耳) 能观察到明显衍射现象的条件是:障碍物或小孔的尺寸比波长小,或差不多;

3、衍射和干涉是波的特性,只有某物资具有这两种性质时,才能说该物资是波;

二、光的电磁说:

1、光是电磁波:

(1)光在真空中的传播速度是3.0×108m/s;

(2)光的传播不需要介质;

(3)光能发生衍射、干涉现象;

2、电磁波谱:无线电波、红外线、可见光、紫外线、伦琴射线、γ射线;

(1)从左向右,频率逐渐变大,波长逐渐减小;

(2)从左到右,衍射现象逐渐减弱;

(3)红外线:热效应强,可加热,一切物体都能发射红外线;

(4)紫外线:有荧光效应、化学效应能,能辨比细小差别,消毒杀菌;

3、光的衍射:特例:萡松亮斑;

4、光的干涉:

(1)双缝(双孔)干涉:波长越长、双孔距离越小、光屏间距离越大,相邻亮条纹间的距离越大;

(2)薄膜干涉:特例:肥皂泡上的彩色条纹;检测工件的平整性,夏天油路上油滴成彩色;

三、光电效应:在光的照射下,从物体向外发射出电子的现象叫光电效应,发射出的电子叫光电子;

1、现象:

(1)任何金属都有一个极限频率,只有当入射光的频率大于极限频率时,才能发生光电效应;

(2)光电子的最大初动能与入射光的强度无光,只随入射光的频率的增大而增大;

(3)入射光照射在金属上光电子的发射几乎是瞬时的,一般不超过10-9s

(4)当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比;

2、在空间传播的光是不连续的而是一份一份的,每一份叫做光子;光子的能量:e=hγ(光的频率越大光子的能量越大)

3、光电效应证明了光具有粒子性;

4、光具有波、粒二象性:光既具有波动性又具有粒子性;

四、激光具有:相干性(作为干涉光源);平行度好(作光盘、测量);亮度高(加热、光刀)

五、物质波:(自然界中的物质可分为:场和实物)

1、自然界中一切物体都有波动性;

2、物质波的波长:λ=h/p;

一、 原子的核式结构:

1、α粒子的散射实验:

(1)绝大多数α粒子穿过金箔后几乎沿原方向前进;

(2)少数α粒子穿过金箔后发生了较大偏转;

(3)极少数α粒子击中金箔后几乎沿原方向反回;

二、原子的核式结构模型:

原子中心有个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子绕核做高速的圆周运动;

1、原子核又可分为质子和中子;(原子核的全部正电荷都集中在质子内)质子的质量约等于中子的质量;

2、质子数等于原子的核电荷数(z);质子数加中子数等于质量数(a)

三、波尔理论:

1、原子处于一系列不连续的能量状态中,每个状态原子的能量都是确定的,这些能量值叫做能级;

2、原子从一能级向另一能级跃迁时要吸收或放出光子;

(1)从高能级向低能级跃迁放出光子;

(2)从低能级向高能级跃迁要吸收光子;

(3)吸收或放出光子的能量等于两个能级的能量差;hγ=e2-e1;

三、天然放射现象 衰变

1、α射线:高速的氦核流,符号:42he;

2、β射线:高速的电子流,符号:0-1e;

3、γ射线:高速的光子流;符号:γ

4、衰变:原子核向外放出α射线、β射线后生成新的原子核,这种现象叫衰变;(衰变前后原子的核电荷数和质量数守恒)

(1)α衰变:放出α射线的衰变:zx=z-2y+2he;

(2)β衰变:放出β射线的衰变:azx=az+1y+0-1e;

四、核反应、核能、裂变、聚变:

1、所有核反应前后都遵守:核电荷数、质量数分别守恒;

(1)卢瑟福发现质子:147n+42he→178 o+11h;

(2)查德威克发现中子:94be+42he→126c+10n;

2、核反应放出的能量较核能;

(1)核能与质量间的关系:e=mc2

(2)爱因斯坦的质能亏损方程:△e=△mc2;

3、重核的裂变:质量较大和分裂成两个质量较小的核的反应;(原子弹、核反应堆)

4、轻核的聚变:两个质量较小的核变成质量较大的核的反应;(氢弹)

高二会考物理必考知识点公式篇六

1、了解常见的静电现象。

2、静电的产生

(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

(2)接触起电:

(3)感应起电:

3、同种 电荷相斥,异种电荷相吸。

1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象

(1)分析摩擦起电

(2)分析接触起电

(3)分析感应起电

4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

例题分析:

1、下列说法正确的是( a )

a.摩擦起电和静电感应都是使物体的正负电荷分开,而总电荷量并未变化

b.用毛皮摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了毛皮上

c.用丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷

d.物体不带电,表明物体中没有电荷

2、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:( c )

a.闭合k1,有电子从枕型导体流向地

b.闭合k2,有电子从枕型导体流向地

c.闭合k1,有电子从地流向枕型导体

d.闭合k2,没有电子通过k2

高二会考物理必考知识点公式篇七

(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。

1、深刻理解运动的合成与分解

(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:

1、分运动的独立性;

2、运动的等效性(合运动和分运动是等效替代关系,不能并存);

3、运动的等时性;

4、运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)

(2)互成角度的两个分运动的合运动的判断

合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。

①两个直线运动的合运动仍然是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。

2、怎样确定合运动和分运动

①合运动一定是物体的实际运动

②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。

3、绳端速度的分解

此类有绳索的问题,对速度分解通常有两个原则:

①按效果正交分解物体运动的实际速度

②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)

4、小船渡河问题

(1)l、vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,

(2)渡河的最小位移即河的宽度。为了使渡河位移等于l,必须使船的合速度v的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:vccosθ─vs=0.

所以θ=arccosvs/vc,因为0≤cosθ≤1,所以只有在vc>vs时,船才有可能垂直于河岸横渡。

(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头vc与河岸成θ角,合速度v与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以vs的矢尖为圆心,以vc为半径画圆,当v与圆相切时,α角,根据cosθ=vc/vs,船头与河岸的夹角应为:θ=arccosvc/vs.

高二会考物理必考知识点公式篇八

1.1什么是变压器?

答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。

1.2什么是局部放电?

答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。

1.3局放试验的目的是什么?

答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。

1.4什么是铁损?

答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。

1.5什么是铜损?

答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。

1.6什么是高压首端?

答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。

1.7什么是高压首头?

答:普通220kv变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。

1.8什么是主绝缘?它包括哪些内容?

答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。

它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。

1.9什么是纵绝缘?它包括哪些内容?

答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。

它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。

1.10高压试验有哪些?分别考核重点是什么?

答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。

(1)空载试验主要考核测量变压器的空载损耗和空载电流,验证变压器铁心设计的计算、工艺制造是否满足标准和技术条件的要求,检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。

(2)负载试验主要考核产品设计或制造中绕组及载流回路中是否存在缺陷;

(3)外施耐压试验主要考核产品主绝缘电气强度、主绝缘是否合理、绝缘材料有无缺陷、制造工艺是否符合要求;

(4)感应耐压试验主要考核变压器的纵绝缘;

(5)局部放电试验主要考核变压器的整体绝缘性能;

(6)雷电冲击试验主要考核变压器绝缘结构、绝缘质量是否能经受大气放电造成的过电压的冲击。

1.11生产中为什么要注意绝缘件清洁?

答:绝缘件清洁与否对变压器电气强度影响很大,若绝缘件上有粉尘,经过油的冲洗就随油游动起来。因为粉尘中有许多金属粒子,它在电场的作用下,排列成串,形成带电体之间通路(搭桥),从而破坏了绝缘强度,造成放电。电压越高,粉尘游离越严重,越容易放电。

高二会考物理必考知识点公式篇九

1、分子热运动速率的统计分布规律

(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间。

(2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律分布。

(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变。

2、气体实验定律

8、理想气体

宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下(压强不太大、温度不太低)实验气体可以看成理想气体

微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间。故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能)

应用状态方程或实验定律解题的一般步骤:

(1)明确研究对象,即某一定质量的理想气体;

(2)确定气体在始末状态的参量p1、v1、t1及p2、v2、t2;

(3)由状态方程或实验定律列式求解;

(4)讨论结果的合理性。

9、气体压强的微观解释

大量分子频繁的撞击器壁的结果

影响气体压强的因素:

①气体的平均分子动能(宏观上即:温度)

②分子的密集程度即单位体积内的分子数(宏观上即:体积)

高二会考物理必考知识点公式篇十

1、了解常见的静电现象。

2、静电的产生

(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

(2)接触起电:

(3)感应起电:

3、同种 电荷相斥,异种电荷相吸。

1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象

(1)分析摩擦起电

(2)分析接触起电

(3)分析感应起电

4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

例题分析:

1、下列说法正确的是( a )

a.摩擦起电和静电感应都是使物体的正负电荷分开,而总电荷量并未变化

b.用毛皮摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了毛皮上

c.用丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷

d.物体不带电,表明物体中没有电荷

2、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:( c )

a.闭合k1,有电子从枕型导体流向地

b.闭合k2,有电子从枕型导体流向地

c.闭合k1,有电子从地流向枕型导体

d.闭合k2,没有电子通过k2

本文发布于:2023-04-17 23:11:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/meiwen/c86f3c3c518291e945a283cb350b6ba2.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:2023年高二会考物理必考知识点公式(十篇).doc

本文 PDF 下载地址:2023年高二会考物理必考知识点公式(十篇).pdf

标签:知识点   公式   物理   十篇
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图