在现实学习生活中,大家都没少背知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。还在为没有系统的知识点而发愁吗?这次漂亮的小编为亲带来了6篇《有关高中必修五数学知识点》,可以帮助到您,就是t7t8美文号小编最大的乐趣哦。
高中必修五数学知识点总结 篇一1、数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集Nx或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列
1、等差数列通项公式
an=a1+(n—1)d
n=1时a1=S1
n≥2时an=Sn—Sn—1
an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b
2、等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3、前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①
Sn=an+an—1+an—2+······+a1
=an+(an—d)+(an—2d)+······+[an—(n—1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n—1)d÷2
Sn=dn2÷2+n(a1—d÷2)
亦可得
a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n
an=2sn÷n—a1
有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1
4、等差数列性质
一、任意两项am,an的关系为:
an=am+(n—m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx
三、若m,n,p,q∈Nx,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈Nx,有
Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差数列。
等比数列
1、等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
2、等比数列通项公式
an=a1xq’(n—1)(其中首项是a1,公比是q)
an=Sn—S(n—1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3、等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn—s(n—1)(n≥2)
4、等比数列性质
(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)
(6)任意两项am,an的关系为an=am·q’(n—m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
数学三角形斜边计算公式
斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。
三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)
解答过程如下:
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2
(2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。
在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用毕达哥拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。
高中数学快速解题法 7大数学万能解题方法 篇二方法1、在解题的过程中,是一个思维的过程。一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。
方法2、做一道题目时,最重要的就是审题。审题的第一步就是读题。读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。
方法3、在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。
方法4、做题只是学习过程中的一部分,所以不能为了解题而解题。解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。
方法5、有些题目,尤其是几何体,一定要学会画图。画图是一个把抽象思维变成形象思维的过程,会大大降低解题的难度。很多题目,只要分析图画出来之后,其中的关系就会变得一目了然。所以学会画图,对于提高解题速度非常重要。
方法6、人对事物的认知总是会有一个从易到难的过程,简单的问题做多了,概念清晰了,对解题的步骤熟悉了,解题时就会形成跳跃思维,解题的速度也会大大的提高。所以在学习时,要根据自己的能力,去解那些看似简单,却比较重要的习题,来不断提高解题速度和解题能力。随着速度和能力的提高,在逐渐的去增加难度,就会事半功倍了。
方法7、习惯很重要,很多同学做题速度慢就是平时做作业的时候习惯了拖延时间,从而导致了不好的解题习惯。所以想要提高做题速度,就要先改变拖沓的习惯。比较有效的方法是限时答题,在平常做作业的时候,给自己规定一个时间,先不管正确率,首先要保证在规定时间内完成数学作业,然后在去改正错误。时间长了之后,自然会改正拖延时间的坏毛病。
高中必修五数学知识点 篇三(一)解三角形:
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
2、正弦定理的变形公式:①,,;
②,,;③;
3、三角形面积公式:.
4、余弦定理:在中,有,推论:
(二)数列:
1.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
数学必修五知识点归纳 篇四1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。
注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式。
定义域补充
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的集合。
(6)指数为零底不可以等于零
2、构成函数的三要素:定义域、对应关系和值域
再注意:
(1)构成函数三个要素是定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
值域补充
(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域。(2)。应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。(3)。求函数值域的常用方法有:直接法、反函数法、换元法、配 s://m./ 方法、均值不等式法、判别式法、单调性法等。
3、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。即记为C={P(x,y)|y=f(x),x∈A}
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
发现解题中的错误。
4、快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
5、什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征。
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数(参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况。(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
高中必修五数学知识点整理 篇五(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。
判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
高中必修五数学知识点梳理 篇六数列
1、数列的定义及数列的通项公式:
① an?f(n),数列是定义域为N
的函数f(n),当n依次取1,2,???时的一列函数值② i。归纳法
若S0?0,则an不分段;若S0?0,则an分段iii。若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到关于an?1和an的递推关系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再构造方程组:??(下减上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差数列:
①定义:a
n?1?an=d(常数),证明数列是等差数列的重要工具。 ②通项d?0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
n(n?1)2
③前n?na1?
d,
d?0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。
④性质:ii。若?an?为等差数列,则am,am?k,am?2k,…仍为等差数列。 iii。若?an?为等差数列,则Sn,S2n?Sn,S3n?S2n,…仍为等差数列。 iv若A为a,b的等差中项,则有A?3。等比数列:
①定义:
an?1an
?q(常数),是证明数列是等比数列的重要工具。
a?b2
②通项时为常数列)。
③。前n项和
需特别注意,公比为字母时要讨论。
以上就是t7t8美文号为大家整理的6篇《有关高中必修五数学知识点》,希望可以启发您的一些写作思路。
本文发布于:2023-06-24 22:51:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/b53a68894da81a3994bd5c4b63971a36.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:有关高中必修五数学知识点优秀6篇(高中必修五数学数列知识点总结).doc
本文 PDF 下载地址:有关高中必修五数学知识点优秀6篇(高中必修五数学数列知识点总结).pdf
留言与评论(共有 0 条评论) |