首页 > 范文

高三数学重点复习必考知识点整理最新4篇(新高三数学知识点归纳)

更新时间:2023-06-25 12:42:46 阅读: 评论:0

只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。它山之石可以攻玉,以下内容是t7t8美文号为您带来的4篇《高三数学重点复习必考知识点整理》,希望能够满足亲的需求。

高三数学基础复习 篇一

1、集合的含义与表示

(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

2、集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集;

(2)在具体情境中,了解全集与空集的含义;

3、集合的基本运算

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用

二。【命题走向】

有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。

预测20__年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为:

(1)题型是1个选择题或1个填空题;

(2)热点是集合的基本概念、运算和工具作用

三。【要点精讲】

1、集合:某些指定的对象集在一起成为集合

(1)集合中的对象称元素,若a是集合A的元素,记作 ;若b不是集合A的元素,记作 ;

(2)集合中的`元素必须满足:确定性、互异性与无序性;

确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;

无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;

(3)表示一个集合可用列举法、描述法或图示法;

列举法:把集合中的元素一一列举出来,写在大括号内;

描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:

非负整数集(或自然数集),记作N;

正整数集,记作N_或N+;

整数集,记作Z;

有理数集,记作Q;

实数集,记作R。

注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

高三数学复习资料 篇二

1、不等式的基本性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性)。

性质2:如果a>b,那么a+c>b+c(不等式的可加性)。

性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.

性质4:如果a>b>0,c>d>0,那么ac>bd.

性质5:如果a>b>0,n∈N,n>1,那么an>bn

例1:判断下列命题的真假,并说明理由。若a>b,c=d,则ac2>bd2;(假)若,则a>b;(真)若a>b且ab<0,则;(假)若a若,则a>b;(真)若|a|b2;(充要条件)命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性。a,b∈R且a>b,比较a3-b3与ab2-a2b的大小。(≥)说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备。

例2:设a>b,n是偶数且n∈N,试比较an+bn与an-1b+abn-1的大小。说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论。因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想。

高三数学复习资料 篇三

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在。

3、渐近线,(垂直、水平或斜渐近线)。

4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

高三数学复习资料(四)

1、求数列极限

求数列极限可以归纳为以下三种形式。

抽象数列求极限

这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。

求具体数列的极限,可以参考以下几种方法:

a.利用单调有界必收敛准则求数列极限。

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

b.利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

求项和或项积数列的极限,主要有以下几种方法:

a.利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

lb.利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c.利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

d.利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

高三数学复习知识整理 篇四

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。

记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

以上就是t7t8美文号为大家带来的4篇《高三数学重点复习必考知识点整理》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在t7t8美文号。

本文发布于:2023-06-25 12:42:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/meiwen/b52477a014342c04e70923fab7438dbf.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:高三数学重点复习必考知识点整理最新4篇(新高三数学知识点归纳).doc

本文 PDF 下载地址:高三数学重点复习必考知识点整理最新4篇(新高三数学知识点归纳).pdf

标签:知识点   数学   归纳   重点   最新
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图