这篇初中奥数实数练习题大全,是©《无#忧考#网》特地为大家整理的,希望对大家有所帮助!
一、基础测试
1.算术平方根:如果一个正数x 等于a,即x2=a,那么这个x正数就叫做a的算术平方根,记作 ,0的算术平方根是 。
2.平方根:如果一个数x的 等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式),正数a的平方根记作 .一个正数有 平方根,它们 ;0的平方根是 ;负数 平方根.
特别提醒:负数没有平方根和算术平方根.
3.立方根:如果一个数x的 等于a,即x3= a,那么这个数x就叫做a的立方根,记作 .正数的立方根是 ,0的立方根是 ,负数的立方根是 。
4、实数的分类
5.实数与数轴:实数与数轴上的点______________对应.
6.实数的相反数、倒数、绝对值:实数a的相反数为______;若a,b互为相反数,则a+b=______;非零实数a的倒数为_____(a≠0);若a,b互为倒数,则ab=________。
7.
8. 数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。
9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.
二、专题讲解:
专题1 平方根、算术平方根、立方根的概念
若a≥0,则a的平方根是 ,a的算术平方根 ;若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是 。
【例1】 的平方根是______
【例2】327 的平方根是_________
【例3】下列各式属于最简二次根式的是( )
A.
【例4】(2010山东德州)下列计算正确的是
(A) (B) (C) (D)
【例5】(2010年四川省眉山市)计算 的结果是
A.3 B. C. D. 9
专题2 实数的有关概念
无理数即无限不循环小数,初中主要学习了四类:含 的数,如: 等,开方开不尽的数,如 等;特定结构的数,例0.010 010 001…等;某些三角函数,如sin60º,cos45 º等。判断一个数是否是无理数,不能只看形式,要看运算结果,如 是有理数,而不是无理数。
【例1】在实数中-23 ,0, ,-3.14, 中无理数有( )A.1个 B.2个 C.3个 D.4个
【例2】(2010年浙江省东阳县) 是
A.无理数 B.有理数 C.整数 D.负数
专题3 非负数性质的应用
若a为实数,则 均为非负数。
非负数的性质:几个非负数的和等于0,则每个非负数都等于0。
【例1】已知(x-2)2+|y-4|+ =0,求xyz的值.
【例2】(2010年安徽省B卷)2.已知 ,且 ,以a、b、c为边组成的三角形面积等于( ).
A.6 B.7 C.8 D.9
专题4 实数的比较大小(估算)
正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小,常用有理数来估计无理数的大致范围,要想正确估算需记熟0~20之间整数的平方和0~10之间整数的立方.
【例1】(2010年浙江省金华)在 -3,- , -1, 0 这四个实数中,的是( )
A. -3 B.- C. -1 D. 0
【例2】二次根式 中,字母a的取值范围是( )
A. B.a≤1 C.a≥1 D.
专题5 二次根式的运算
二次根式的加、减、乘、除运算方法类似于整式的运算,如:二次根式加、减是指将各根式化成最简二次根式后,再利用乘法的分配律合并被开方数相同的二次根式;整式的运算性质在这里同样适用,如:单项式乘以多项式、多项式乘以多项式、乘法公式等.
【例1】计算 所得结果是______.
【例2】阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:a+ 其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+ = a+(1-a)=1,小芳的解答:原式= a+(a-1)=2a-1=2×9-1=17
⑴___________是错误的;
⑵错误的解答错在未能正确运用二次根式的性质: ________
专题6 实数的混合运算
实数的混合运算经常把零指数、负整数指数、绝对值、根式、三角函数等知识结合起来.解决这类问题应明确各种运算的含义( ,运算时注意各项的符号,灵活运用运算法则,细心计算。
【例1】计算:(1)(3 (2)
【例2】(2010年福建省晋江市)计算:
本文发布于:2023-06-06 21:00:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/a9baa37f927ab43458d461db079aa2d5.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:初中奥数实数练习题大全(初中实数计算题及答案).doc
本文 PDF 下载地址:初中奥数实数练习题大全(初中实数计算题及答案).pdf
留言与评论(共有 0 条评论) |