首页 > 范文

最新分数与除法教学反思免费 分数与除法的课后反思(七篇)

更新时间:2023-04-18 07:13:26 阅读: 评论:0

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

分数与除法教学反思免费 分数与除法的课后反思篇一

为了帮助学生更好地理解分数除以整数的意义和计算方法,教学中,我运用数形结合的教学思想。让学生通过折一折,折出4/7的1/2和4/7的1/3,把符号语言和图形语言很好地结合起来,把抽象的过程直观展示出来,通过学生的动手操作。再在操作的过程中说一说,将文字语言和图形相结合,三管齐下,从而使学生理解分数除以整数的意义和计算方法,完成本节课的重点学习内容。

本节课也存在不足之处,如在学生自主探究与合作交流时时间的把握不够好,没有给学生更多的.表达空间。总结方法及优化时应放手让学生多说,在今后的课堂教学中,还得进一步提升教学的素质。

作业反馈:

1、对分数除以整数的计算法则理解不够,除法变成乘法后,除数没有变成相应的倒数。分数除以整数时,应该乘这个整数的倒数。

2、没有正确理解分数除法结果的规律,一个数除以比1小的数,结果比这个数要大。有些比较大小的题目可以不用计算,直接运用计算规律就可以判断出来,但是学生不太会应用。

分数与除法教学反思免费 分数与除法的课后反思篇二

观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

一、以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

二、分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的`1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数与除法教学反思免费 分数与除法的课后反思篇三

该信息窗呈现的是布艺兴趣小组给幼儿园做帽子的信息:用6米布做帽子,每顶用布2/5米,将帽子的2/3送给幼儿园。通过引导学生提出问题,来学习乘除混合运算的问题,是对前面所学知识的综合应用。

“合作探索”中红点部分解决“送给幼儿园多少顶帽子”,探索学习简单分数的乘除混合运算,具有两个功能,一方面是学习分数乘除混合运算的顺序,一方面是分数乘除混合运算解决问题(先除后乘,除的这一步是包含除或具体数量关系)。教材安排了两种解决问题的方法:一是分步列式,二是列综合算式。

自主练习中涉及的内容及题目比较多,在新授课中要注意合理选择使用,在练习课中要注意对比和综合性练习。

本信息窗建议课时数:2课时。第一课时为新授课,教学信息窗、合作探索及自主练习中的第4、5、6、7、9、10题;第二课时为练习课,主要处理自主练习中的其他题目。

新授课教学建议如下

教师可继续承接本单元情境串的话题切入,出示信息窗的情境,理清情境图中包含的信息,提出问题。

学生一般会提一步计算的问题,教师可组织学生随时口头列出算式,同时教师要有意识地引导学生提出两步计算的问题。而后着重让学生解决“送给幼儿园多少顶帽子?”。

解决这一问题时,要引领学生分析解决问题的思路:因为送给幼儿园

的帽子占这些帽子的2 3 ,所以,要求送给幼儿园多少顶帽子,需先求出6 米布共做了多少顶帽子,然后再求出送给幼儿园多少顶帽子。这个问题的解决是求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数的复合。

在学生明确了解题的思路后,放手让学生独立列式解决,再组织全班交流。交流时,要引导学生讲清解决问题的思路,并注意规范解题的具体过程,因为这是第一次接触乘除混合运算。通过两步应用题的解答,可以使学生更好地区分分数乘、除法应用题,进一步提高解题能力和发展学生的分析推理能力。因为前面有了学习的基础,因此,学生解答不会有太大困难,可让学生独立解答。对其中可用方程解答的也可用方程。如果学生出现分数乘除法混合综合算式要予以鼓励,并引导学生注意计算过程,按照从左到右的顺序进行。

关于自主练习。

第1题,分数乘除法的混合运算,要注意引导学生写清楚过程,避免乘除计算方法混淆。

第2题是应用分数乘除法的知识解决实际问题的`题目。练习时,可以引导分析解决问题所需要的信息和数量关系,然后独立计算,交流时着重让学生说说自己的想法。解答第(2)问时,可以用第(1)问的结果乘3/40,还可以直接用毛线的总千克数乘3/5,只要能说清解决问题的思路,都应该给予肯定。

第3题是分数乘除基本计算的题目。练习时,在学生独立计算的基础上,着重让学生交流计算的方法,写清计算的过程,避免乘除法的混淆。

第4题是两步计算的题目,时间、速度与路程的数量关系是学生所熟悉的,只是由原来的整数运算变为分数运算。所以要先让学生自己独立解答,然后交流。

第7、9、11题是用连乘方法解决问题的题目,是对分数乘法知识的循环巩固。练习时,在学生独立解决的基础上交流分析思路。

第10题是有关长方体的题目。已知体积、长和宽,求水深。练习时,先让学生想象出长方体鱼缸里的水呈长方体状态,求水深就是求其高。然后让学生独立解决问题,学生可能设未知数列方程,也可能用体积除以底面积列算式。交流时,注意让学生说说解决问题的思路。

第13题,学生在解决问题的过程中,可能有不同的方法,如:3/5 ×1/4÷3,3/5 ×(1/4÷3)或分步解答等,只要学生能解决问题且能讲清思路就可以。

第14题是一道综合应用的题目。练习时,注意让学生理清题中的数量关系。

第(1)小题是一道连乘的题目,其中“百米”是较为隐藏的信息,说明总长度为100米;第(2)小题是稍复杂的“求一个数是另一个数的几分之几”的问题,要正确地分析思路。如果一些学生有困难,教师可进行必要的提示。

分数与除法教学反思免费 分数与除法的课后反思篇四

本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的`、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

a:你们是几块几块的分的?

b:每人每次分得多少块饼?

c:分了几次,共分了多少块?(就是3个块就是几块)

d:怎样才能看出是几块?

问题的提出针对性强,有利于学生把握数学的本质。

数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数与除法教学反思免费 分数与除法的课后反思篇五

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的.学习活动,促进学生主动的参与。”所以,在导入新课环节,我有意设计了两道除法计算题:8÷9=

4÷7=

学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。

汇报后,我引发学生思考:8÷9=0.88……和8÷9=8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。

之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。

我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。

成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

分数与除法教学反思免费 分数与除法的课后反思篇六

《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

在这节课的教学中,我觉得有以下几方面值得我去思考:

一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的`学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。

分数与除法教学反思免费 分数与除法的课后反思篇七

蒲场镇儒溪小学:江娓 《分数与除法》这一节对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。本节课的教学设计,让学生在现实的情境中体验和理解数学,“学生是教学活动的主体”,而“动手实践、自主探索与合作交流是学生学习数学的重要方法”。

开课前,,我利用用学生都了解的《西游记》作为切入点,以八戒找食物为主线提出三个难易不同的问题,让学生去帮助八戒解决怎样把8个桃、4个梨、1个西瓜平均分给4个人的数学问题,每人分到多少个这样的一个简单问题。探索一个物体平均分成若干份,求每份是多少,使学生比较容易建立分数意义与除法意义之间的联系,从而体会分数与除法之间的关系,并为下面的探究铺路搭桥。

教学中,我组织学生动手操作探究解决例题2(类比题)“把3个饼平均分给4个人,每个人分得多少个?”先让学生试着猜一猜,培养学生的数感,让学生做到心中有数,渗透数学研究的思想方法。然后利用手里的学具分分看,课前,我给每组都准备了3个同样大小的圆形卡片。课中,让学生通过看一看、剪一剪、分一分,探究知识的同时,培养学生的动手能力。开放的让学生用自己喜欢的方式来验证自己的想法,并为学生提供充分交流与

展示的.空间与时间,尊重学生的个性发展。当得出结论:“无论用那种方法,我们都能得到把3张饼平均分给4人,每人得到的就是3/4张饼。”探究归纳分数与除法的关系。所以在这个教学环节,我大胆地放手让学生同桌讨论,小组合作学习。开放的情景和问题,学生往往会有更宽广的视野和活跃的思维。

这样的问题情境激发学生积极思考,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与人交流,动手操作。整个教学过程注重学生参与的主动性,在互相启发的学习活动中,使学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

本节课基本完成了目标,数学课堂有着千变万化的因素,要上好一堂优秀的数学课却非易事。虽然学生对分数与除法的联系学生理解了,但是它们之间的区别学生好像还很朦胧。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。学生的学习兴趣还没有完全调动起来等,总之这节课的不足之处还有很多,让我认识到自己的不足,并及时改正。

本文发布于:2023-04-18 07:13:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/meiwen/944dc31444c273931feac3c797b80a6f.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:最新分数与除法教学反思免费 分数与除法的课后反思(七篇).doc

本文 PDF 下载地址:最新分数与除法教学反思免费 分数与除法的课后反思(七篇).pdf

标签:除法   分数   课后   最新   七篇
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图