在教学工作者实际的教学活动中,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?这里给大家分享一些关于人教版初三数学优秀教案,方便大家学习。t7t8美文号为朋友们精心整理了6篇《人教版初三数学优秀教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
人教版初中数学教案 篇一掌握用因式分解法解一元二次方程。
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。
重点
用因式分解法解一元二次方程。
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
二、探索新知
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积。)
练习:下面一元二次方程解法中,正确的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11
元一次方程组的解法—代入法教案 篇二教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页
教学目标
(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。
(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。
(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键
教学重点:用代入消元法解二元一次方程组
教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
教具准备教师准备:ppt多媒体课件投影仪
教学方法本节课采用“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。
教学过程
(一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
(二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y
x+y=22
2x+y=40
②设胜的场数是x,则负的场数为22-x
2x+(22-x)=40
2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
第二步,用代入法解方程组把下列方程写成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0学生活动:尝试自主完成,教师纠正思考:能否用含y的式子来表示x呢?
例1用代入法解方程组x-y=3①3x-8y=14②
思路点拨:先观察这个方程组中哪一项系数较小,发现①中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入②消元。
解:由①变形得X=y+3③
把③代入②,得3(y+3)-8y=14
解这个方程,得y=-1
把y=-1代入③,得X=2
所以这个方程组的解是X=2y=-1
如何检验得到的结果是否正确?学生活动:口答检验。
第三步,在实际生活中应用代入法解方程组
例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?思路点拨:本题是实际应用问题,可采用二元一次方程组为工具求解,这就需要构建模型,寻找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应该分装x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=50000
第四步,小组讨论,得出步骤学生活动:根据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的。);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
(三)分组比赛,巩固新知为了激发学生的兴趣,巩固所学的知识,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集知识性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。
(四)归纳总结,知识回顾1、通过这节课的学习活动,你有什么收获?2、你认为在运用代入法解二元一次方程组时,应注意什么问题?
(五)布置作业1、作业:P103页第1、2、4题2、思考:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,用于解决新问题。基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计。在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。重视知识的发生过程。将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的。
人教版初中数学教案 篇三理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程。
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。
重点
求根公式的推导和公式法的应用。
难点
一元二次方程求根公式的推导。
一、复习引入
1、前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)
2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评)。
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根。
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。
(2)这个式子叫做一元二次方程的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根。
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6)。
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况。
五、作业布置
教材第17页 习题4
人教版初中数学教师教案 篇四应用二元一次方程组——鸡兔同笼
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识。
2、通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只。
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只。
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
1、设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15
2、小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
三、合作探究
探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?
题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙。设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B)。
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系。
设:设未知数。
列:根据等量关系,列出方程组。
解:解方程组,求出未知数。
答:检验所求出未知数是否符合题意,写出答案。
四、自主思考
探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?
解:设做竖式纸盒X个,横式纸盒y个。根据题意,得
x+2y=1000
4x+3y=2000
解这个方程组得x=200
y=400
答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。
练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?
解:设做竖式纸盒x个,做横式纸盒y个,根据题意
y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完。
归纳:
五、达标测评
1、解下列应用题
(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
解:设4分邮票x张,8分邮票y张,由题意得:
4x+8y=6800①
y-x=40②
所以,4分邮票540张,8分邮票580张
(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成
分析:由于工作总量未知,我们将其设为单位1
晴天一天可完成
雨天一天可完成
解:设晴天x天,雨天y天,工作总量为单位1,由题意得:
总天数:7+10=17
所以,共17天可完成任务
六、应用提高
学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?
分析:铅笔数量+圆珠笔数量+钢笔数量=232
铅笔数量=圆珠笔数量×4
铅笔价格+圆珠笔价格+钢笔价格=300
解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:
将②代入①和③中,得二元一次方程组
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,铅笔175支,圆珠笔44支,钢笔12支
七、体验收获
1、解决鸡兔同笼问题
2、解决以绳测井问题
3、解应用题的一般步骤
七、布置作业
教材116页习题第2、3题。
x+y=35
2x+4y=94
x=23
y=12
绳长的三分之一-井深=5
绳长的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
X=540
Y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
X=176
Y=44
Z=12
七年级人教版数学教案 篇五第一章 有理数
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。
2、通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系。
(2)数轴能反映数的性质。
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
(4)数轴可使有理数大小的比较形象化。
3、对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分。
4、正确理解绝对值的概念是难点。
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值。
(2)有理数的绝对值是一个非负数,即最小的绝对值是零。
(3)两个互为相反数的绝对值相等,即│a│=│-a│。
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值。
2、难点:准确理解负数、绝对值等概念。
3、关键:正确理解负数的意义和绝对值的意义。
课时划分
1.1 正数和负数 2课时
1.2 有理数 5课时
1.3 有理数的加减法4课时
1.4 有理数的乘除法5课时
1.5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1.1正数和负数
第一课时
三维目标
一。知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解。 教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前
11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33
的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。?正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
八、作业布置
1、课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计
1.1正数和负数
第一课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面
11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33
“+”、“-”号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
1.1正数和负数
第二课时
三维目标
一。知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二。过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三。情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键
1、重点:正确理解正、负数的概念,能应用正数、?负数表示生活中具有相反意义的量。
2、难点:正数、负数概念的综合运用。
3、关键:通过对实例的进一步分析,?使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备
投影仪。
教学过程
四、复习提问课堂引入
1、什么叫正数?什么叫负数?举例说明,?有没有既不是正数也不是负数的数?
2、如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,?中国增长7.5%。
写出这些国家20__年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。?“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
人教版初中数学教师教案 篇六一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的。
二。一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集。
三。不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3、。我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四。求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。
以上就是t7t8美文号为大家带来的6篇《人教版初三数学优秀教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在t7t8美文号。
本文发布于:2023-06-18 18:46:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/2ee8dfbf6f0f72efbfa480495ca2bb40.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:人教版初三数学优秀教案最新6篇(人教版初三数学优秀教案最新6篇课文).doc
本文 PDF 下载地址:人教版初三数学优秀教案最新6篇(人教版初三数学优秀教案最新6篇课文).pdf
留言与评论(共有 0 条评论) |