作为一位杰出的教职工,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写才好呢?下面是小编辛苦为朋友们带来的9篇《高中数学的教学设计》,亲的肯定与分享是对我们最大的鼓励。
高中数学教学设计范例 篇一教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一。基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。
二。问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理,在求值时,要利用三角函数的有关性质。
例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一。 小结:
1、利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
2、利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的夹角,求第三边和其他两角。
3、边角互化是解三角形问题常用的手段。
二。作业:P80闯关训练
高中数学教学设计 篇二教学目标
1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3、培养学生观察、归纳能力。
教学重点
1、等差数列的概念;
2、等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:(V)课后作业
1、课本P118习题3.21,2
2、(1)预习内容:课本P116例2P117例4
(2)预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
高中数学教学设计 篇三学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题。
学习过程
一、学前准备
复习:
1、(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;
二、新课导学
◆探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
◆应用示例
例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数。
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
◆反馈练习
1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种。
当堂检测
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为()
A.42B.30C.20D.12
2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学教学设计题模板 篇四高中数学教学设计——函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。 教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。 任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。 教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。
2、观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x)。此时,称函数y=f(x)为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用 [例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。
2、已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2)。 又f(x)是偶函数,∴f(x1)>f(x2)。
∴f(x)在(0,+∞)上是增函数。
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练 习]
1、已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。
2.f(x)=-x3|x|的大致图像可能是(
)
3、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数。(2)函数f(x)是奇函数。 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。
四、拓展延伸
1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性。 (2)G(x)=|f(x)|+g(x)的奇偶性。
3、已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数。
4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
高中数学优秀教学设计 篇五教学目标:
1、掌握基本事件的概念;
2、正确理解古典概型的两大特点:有限性、等可能性;
3、掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题。
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1、有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题。
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率。
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习。
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3、求基本事件总数常用的方法:列举法、图表法.
高中数学优秀教学设计 篇六一、探究式教学模式概述
1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。
2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。
3、探究式教学模式的特征。
(1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。
(2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。
(3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。
二、教学设计案例
1、教学内容:数字排列中3、9的探究式教学。
2、教学目标。
(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。
(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。
(3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。
3、教学方法:谈话探究法,讨论探究法。
4、教学过程。
(1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?
(2)提出问题。
问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()
A、36个B、18个C、12个D、24个
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
(3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。
教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?
学生:它们都满足“各位数字之和能被9整除”。
教师:此结论的正确性如何?
学生:老师,我们证明此结论的正确性,好吗?
教师:好。
学生:证明:不妨以n是一个四位数为例证之。
设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)
则n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可证定理的后半部分。
教师:看来上述结论正确。所以得到如下定理。
定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。
教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。
学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教师:启发学生观察这些数字有何特点?提问学生。
学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。
教师:请学生们继续尝试选取其他数字试一试。
学生:3+4+5+6=18是9的倍数。
教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。
故应选D。
(4)学以致用。
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?
学生讨论:
学生1:被6整除的。五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。
学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。
学生3:第一类:5个数字中无0的五位偶数有。
第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。
学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。
(5)概括强化。
重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。
难点:数字排列知识的灵活应用。
关键:证明的思路以及定理的得出。
新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。
(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。
总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。
高中数学教学设计题模板 篇七等比数列的前n 项和
( 第一课时)
一。 教材分析。
( 1)教材的地位与作用:《等比数列的前 n 项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前 n 项和”是“等差数列及其前 n 项和”与“等比数列”
。 内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二。学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓 , 表现欲较强 , 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深
刻,因而片面、不够严谨。
(3)从学生的认知角度来看: 学生很容易把本节内容与等差数列前
n 项和从公式的形成、特点等方
面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前
n 项和公式
的推导有着本质的不同,这对学生的思维是一个突破,另外,对于
q = 1 这一特殊情况,学生往往
容易忽视,尤其是在后面使用的过程中容易出错。
三。教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前
n 项和公式的推导过程、公式的特点,在此
基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类
比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的
---
-
能力。
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的
体验,感受数学的奇异美、结构的对称美、形式的
简洁美。
四。重点 , 难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中
q 与 1 的关系 。
五。教法与学法分析 。
培养学生学会学习、学会探究是全面发展学生能力的重要前提, 是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为: “知识不是被动吸收的, 而是由认知主体主动建构的。”这个观点从教学的角度来理解就是: 知识不是通过教师传授得到的, 而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话: 还课堂以生命力,还学生以活力。
六。课堂设计
(一)创设情境,提出问题。(时间设定:
3 分钟)
[ 利用投影展示 ] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,
对他说:我可以满足你的任何要求。西萨说:请给我棋盘的
64 个方格上,第一格放
1 粒小麦,第二
格放 2 粒,第三格放 4 粒,往后每一格都是前一格的两倍,直至第
64 格。国王令宫廷数学家计算,
结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节
课的主题与重点 ]
---
-
提出问题 1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数 1
2
222
326
3(二)师生互动,探究问题 [5 分钟 ] 提出问题 2:1+ 2+ 2 + 2 +
23
+2
63
究竟等于多少呢 ?
) 有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。 提出问题 3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,
后一项都是前一项的 2
倍)
提出问题 4:如果我们把每一项都乘以
2,就变成了它的后一项,那么我们若在此等式两边同以
得到另一式:
[ [ 利用投影展示 ]
。.。S6463 1 2 2
2
3
2
2、。.。.。.。.(1)
2S64 22 2
2
3
2
46
42、。.。.。.(2)
比较( 1)(2 )两式,你有什么发现?(学生经过比较发现:( 1)、( 2)两式有许多相同的项)
提出问题 5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:
S 64
26
41
[ 这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错
位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇
]
这时,老师向同学们介绍错位相减法,并
提出问题 6:同学们反思一下我们错位相减法求此题的过程,为什
么( 1)式两边要同乘以 2 呢?
[这个问题的设计意图 :让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导
做好铺垫 ]
(三)类比联想,解决问题。 [ 时间设定: 10 分钟 ]
提出问题 7: 设等比数列 a a n 的首项为1, 公比为 q, 求它的前项和 Sn
即 S n a1 a2 a3
a
n
学生开展合作学习 , 讨论交流,老师巡视课堂,发现有典型解法的,叫同
学板书在黑板上。
[ 设计意图:从特殊到一般 ,从模仿到创新 , 有利于学生的知识迁移和能力提高,让学生在探索过程
中,充分感受到成功的情感体验 ]
---
2,
-
(四)分析比较,开拓思维。 [ 时间设定: 5 分钟 ]
将不同的的方法进等行比分析数评列价。{根an据},学公生比的为认识q状,况它,的可前能有n如下项几和种方法:
错位相减法 1:
S
n
aa1 q a q
21
1
a q
n 2
a q
n 1
1
qSn
a1 q a1q
2
(1 q)Sn a1等比数列
a1 q a1q a1 qna1q
n2n1n
错位相减法2{ an },公比为
a2 a2
q
,它的前 n 项和
Sn a1
qS n
a3 a3
a n 1a
an an
n 1
an q
(1 q ) Sna1 an q
等比数列 {an },公比为
,它的前 n 项和
提出公比 q
qSn a
1a2 a3
2S a a q a q
n
1
1
aa1
n 1n
a q
1
1
n2
a q
1 1
n1
1 1
a
1
q(a a q
1a q
n 1n
n
3a q )
n2
aq
( Sn
a1q )
(1 q)Sn
a1 a1 q累加法
等比数列 { an },公比为 ,它的前 n 项和
q
aa
n 1
Sn a1 a2 a3
n
a2 a3 a4 an a2 a3
a1 q a2 q a3 q
an 1q
an q( a1 a2 a3
an 1 )
Sn a1 q( Sn an )
(1 q)Sn a1anq
可能也有同学会想到由等比定理得
---
-
Sn a1 a2 a3
a2 a3
a1 a2 a2 a3
an
aaan an
n 1
q
q
即 a1 a2 San n 1
1 an q Sn
(1 q)Sn a1 anq
【设计意图:共享学习成果,开拓了思维,感受数学的奇异美 (五)。归纳提炼,构建新知。 [ 时间设定: 3 分钟 ]
提出问题 8: 由
】
(1- q)s = aq
1? q 1 时是什么数列?此时 Sn ?
【设计意图:通过反问精讲,一方面使学生加深对知识的认识, 完善知识结构,增强思维的严谨性】
。
提出问题 9: 等比数列的前 n项和公式怎样 ?
a1 (1 q )
n
, q 1
a1 an q
Sn1 学生归纳出 Sn
, q 1
1 q
na1, q 1 q
na1 , q 1
【设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解 (六)层层深入,掌握新知 。[ 时间设定: 15 分钟 ]
】
基础练习 1已知 an 是等比数列 , 公比为 q
(1)若a=,q=,则S 1 3
3n(2)。则a1
2, q 1,则Sn
练习 2 判断是非
n 2 1
1 (1 2 )
n(1)。1-2+4-8+16-
+ -2
2 3
n
1 ( 2)
n
1 (1 2 )
(2)。1 2
2
2
2
2
3
8
1 2
8a(1 a )
1 a
(3)。a a
a
a
【设计意图:通过两道简单题来剖析公式中的基本量。进行正反两方面的“短、浅、快” 练习。通
---
-
过总结、辨析和反思,强化公式的结构特征。 】
例 1 已知数列 an 是等比数列 , 完成下表
题号 a1 (1) 1/2 (2) 27 q 1/2 2/3
n
8
an
Sn
8
( ) -2 -96
-6
33【设计意图:渗透方程思想 。通过公式的正用和逆用进一步提高学生运用知识的能力 三求二 ”的题型 】
。掌握公式中 ”知
练习 3:求等比数列 1, 1 , 1 , ,
2 4 8 16
1 1 1
11前 8 项和;
63
变式 1、等比数列 2 , 4 , 8 ,16,
前多少项的和是 64 ;
111变式 2、等比数列
, , 1 , , 求第 5 项到第 10 项的和;
2 4 8 16
变式 3、等比数列 a,a,a,
2
3a, 求前 2n 项中所有偶数项的和。
n
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光
点,给予热情表扬。 )
【设计意图:变式训练 ,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思
想】。
练习 4
有一位大学生毕业后到一家私营企业去工作,试用期过后,老板对这位大学生很欣赏,
有意留下他,就让这位大学生提出待遇方面的要求,这位学生提出了两种方案让老板选择,其一:
工作一年,月薪五千元;其二:工作一年,第一个月的工资为
20 元,以后每个月的工资是上月工资
的 2 倍,此时,老板不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。请你分析一下,老板的选择是否正确?
【设计意图: 让学生进一步认识到数学来源于生活并应用于生活,生活中处处有数学。
】
(七)总结归纳,加深理解。 [ 时间设定: 2 分钟 ]
(1)等比数列的求和公式是什么?应用时要注意什么? (2)用什么方法可以推导了等比数列的求和公式?
【设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构】
(八)课后作业,巩固提高。 [ 时间设定: 1 分钟 ]
必做:( 1)P66练习 1
---
-
研究性作业:请上网查阅“芝诺悖论”
选做:求和: 1 2 2 22 3 23 4 24
n
2n
【设计意图:为了使所有学生巩固所学知识,布置了“必做题”
;“选做题”又为学有余力者留有自
。】 由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野
七、教学反思:
本节课立足课本,着力挖掘,设计合理,层次分明。充分体现以学生发展为本,培养学生的观察、概括和探究能力, 遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,
通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究
能力的训练,引导学生发现数学的美,体验求知的乐趣。
---
高中数学优秀教学设计 篇八一、目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3、情感、态度与价值观
学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
流程图:
(四)归纳小结 巩固题
1、顺序结构和选择结构的模式是怎样的?
2、怎样用流程图表示算法。
(五)练习P99 2
(六)作业P99 1
高中数学教学设计范例 篇九一、目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3、情感、态度与价值观
学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
流程图:
(四)归纳小结 巩固题
1、顺序结构和选择结构的模式是怎样的?
2、怎样用流程图表示算法。
(五)练习P99 2
(六)作业P99 1
读书破万卷下笔如有神,以上就是t7t8美文号为大家带来的9篇《高中数学的教学设计》,希望对您的写作有所帮助。
本文发布于:2023-06-20 09:47:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/2b8f283f63c9ff90ef8dd9c46e61deff.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:高中数学的教学设计优秀9篇(高中数学的教学设计优秀9篇答案).doc
本文 PDF 下载地址:高中数学的教学设计优秀9篇(高中数学的教学设计优秀9篇答案).pdf
留言与评论(共有 0 条评论) |