作为一位不辞辛劳的人民教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?以下内容是t7t8美文号为您带来的3篇《八年级数学教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
八年级数学教案 篇一教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点:灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
八年级数学教案 篇二平方差公式
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;
2、能用平方差公式进行熟练地计算;
3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律。
学习重难点:
重点:能用平方差公式进行熟练地计算;
难点:探索平方差公式,并用几何图形解释公式。
学习过程:
一、自主探索
1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现。
3、你能用自己的语言叙述你的发现吗?
4、平方差公式的特征:
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二 、试一试
例1、利用平方差公式计算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式计算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如图,边长为a的大正方形中有一个边长为b的小正方形。
(1)请表示图中阴影部分的面积。
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b
(3)比较(1)(2)的结果,你能验证平方差公式吗?
四、巩固练习
1、利用平方差公式计算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式计算
(1)803797 (2)398402
3、平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以
4、下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5、下列计算中,错误的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个 B.2个 C.3个 D.4个[来源:中。考。资。源。网]
6、若x2-y2=30,且x-y=-5,则x+y的值是( )
A.5 B.6 C.-6 D.-5
7、(-2x+y)(-2x-y)=______.
8、(-3x2+2y2)(______)=9x4-4y4.
9、(a+b-1)(a-b+1)=(_____)2-(_____)2.
10、两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
11、利用平方差公式计算:20 19 。
12、计算:(a+2)(a2+4)(a4+16)(a-2)。
五、学习反思
我的收获:
我的疑惑:
六、当堂测试
1、下列多项式乘法中能用平方差公式计算的是( )。
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、计算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4、利用平方差公式计算
①1003997 ②14 15
七、课外拓展
下列各式哪些能用平方差公式计算?怎样用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)
八年级数学教案 篇三一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力。
本节课的教学难点为:二次根式性质的灵活运用。
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方。
问题2 根据算术平方根的意义填空,并说出得到结论的依据。
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)。
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力。
例2 计算
(1) ;(2) 。
师生活动:学生独立完成,集体订正。
【设计意图】巩固二次根式的性质1,学会灵活运用。
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根。
问题5 根据算术平方根的意义填空,并说出得到结论的依据。
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力。
例3 计算
(1) ;(2) 。
师生活动:学生独立完成,集体订正。
【设计意图】巩固二次根式的性质2,学会灵活运用。
3.归纳代数式的概念
问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念。
【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力。
4.综合运用
(1)算一算:
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号。
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维。
(3)谈一谈你对 与 的认识。
【设计意图】加深学生对二次根式性质的理解。
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题。
五、目标检测设计
1. ; ; 。
【设计意图】考查对二次根式性质的理解.
2.下列运算正确的是( )
A. B. C. D.
【设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若 ,则 的取值范围是 .
【设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算: .
【设计意图】考查二次根式性质的灵活运用.
它山之石可以攻玉,以上就是t7t8美文号为大家带来的3篇《八年级数学教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在t7t8美文号。
本文发布于:2023-06-22 06:46:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/meiwen/1c2d4c27cec80191ea80d30525f99524.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:八年级数学教案优秀3篇(八年级数学教案优秀3篇人教版).doc
本文 PDF 下载地址:八年级数学教案优秀3篇(八年级数学教案优秀3篇人教版).pdf
留言与评论(共有 0 条评论) |