多目标非线性规划程序(Matlab)

更新时间:2023-08-12 05:28:28 阅读: 评论:0

function [errmsg,Z,X,t,c,fail] = BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,tts,options1,options2,maxSQPit,varargin);
%·ÇÏßÐÔÕûÊý¹æ»®Ä£ÐÍÇó½â·ÖÖ§¶¨½çµü´úËã·¨¡£ÔÚMATLAB5.3ÖÐʹÓã¬ÐèOptimization toolbox 2.0Ö§³Ö?
%          Minimize F(x)
%subject to: xlb <= x <=xub
lookinto%              A*x <= B
%              Aeq*x=Beq
%              C(x)<=0 
%                  Ceq(x)=0
人际交往口才训练%
%              x(i)¿ÉΪÁ¬Ðø±äÁ¿£¬ÕûÊý£¬»ò¹Ì¶¨Öµ
% ʹÓøñʽ
%[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',tts)
%fun£º  MÎļþÃû£¬±íʾ×îС»¯Ä¿±êº¯Êýf=fun(x)
%x0:    ÁÐÏòÁ¿£¬±íʾ±äÁ¿³õÖµ
%xstat£º ÁÐÏòÁ¿£¬xstat(i)=0±íʾx(i)ΪÁ¬Ðø±äÁ¿£¬1±íʾÕûÊý£¬2±íʾ¹Ì¶¨Öµ
%xl£º  ÁÐÏòÁ¿£¬±íʾ±äÁ¿Ï½ç
%xu:    ÁÐÏòÁ¿£¬±íʾ±äÁ¿ÉϽç
%A:    ¾ØÕó, ±íʾÏßÐÔ²»µÈʽԼÊøϵÊý
韦博英语价格%B:    ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÉϽç
%Aeq:  ¾ØÕó, ±íʾÏßÐÔµÈʽԼÊøϵÊý
%Beg:  ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÓÒ¶ËÖµ
%nonlcon:  MÎļþÃû£¬±íʾ·ÇÏßÐÔÔ¼Êøº¯Êý[C,Ceq]=nonlin(x),ÆäÖÐC(x)Ϊ²»µÈʽԼÊø,
无法拥有的你 玄彬%              Ceq(x)ΪµÈʽԼÊø
%tts:  Ëã·¨ÉèÖÃ
%errmsq: ·µ»Ø´íÎóÌáʾ
%Z:      ·µ»ØÄ¿±êº¯Êý×îСֵ
%X:      ·µ»Ø×îÓŽâ
%
%ÀýÌâ
%  max x1*x2*x3
%  -x1+2*x2+2*x3>=0
英语天天学
%  x1+2*x2+2*x3<=72
%  10<=x2<=20
%    x1-x2=10
% ÏÈд Mº¯Êýdiscfun.m
%                function f=discfun(x)
chen guangcheng%                f=-x(1)*x(2)*x(3);
%Çó½â
%    clear;x0=[25,15,10]';xstat=[1 1 1]';
%    xl=[20 10 -10]';xu=[30 20 20]';
%    A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10;
%    [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq);
mouevent%    XMAX=X',ZMAX=-Z
%
% BNB18 Finds the constrained minimum of a function of veral possibly integer variables.
% Usage: [errmsg,Z,X,t,c,fail] =
%        BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,ttings,options1,options2,maxSQPiter,P1,P2,...)
%
% BNB solves problems of the form:
% Minimize F(x) subject to: xlb <= x0 <=xub
%                          A*x <= B  Aeq*x=Beq
%                          C(x)<=0  Ceq(x)=0
%                          x(i) is continuous for xstatus(i)=0 
%                          x(i) integer for xstatus(i)= 1
%                          x(i) fixed for xstatus(i)=2
%
% BNB us:
% Optimization Toolbox Version 2.0 (R11) 09-Oct-1998
% From this toolbox fmincon.m is called. For more info type help fmincon.
%
% fun is the function to be minimized and should return a scalar. F(x)=feval(fun,x).
% x0 is the starting point for x. x0 should be a column vector.
% xstatus is a column vector describing the status of every variable x(i).
% xlb and xub are column vectors with lower and upper bounds for x.
% A and Aeq are matrices for the linear constrains.
% B and Beq are column vectors for the linear constrains.
% nonlcon is the function for the nonlinear constrains.
% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.
%
% errmsg is a string containing an error message if BNB found an error in the input.
% Z is the scalar result of the minimization, X the values of the accompanying variables.
% t is the time elapd while the algorithm BNB has run, c is the number of BNB cycles and
制版费英文% fail is the number of unsolved leaf sub-problems. 
%
% ttings is a row vector with ttings for BNB:
% ttings(1) (standard 0) if 1: u pha 1 by relaxation. This sometimes makes the algorithm
% faster, becau pha 1 means the algorithm first checks if there is a feasible solution
% for a sub-problem before trying to find a best solution. If there is no feasible solution BNB
% will not try to find a best solution.
% ttings(2) (standard 0) if 1: if the sub-problem did not converge do not branch. If a sub-
% problem did not converge this means BNB did not find a solution for it. Normally BNB will
% branch the problem so it can try again to find a solution.
% A sub-problem that is a leaf of the branch-and-bound-three can not be branched. If such
% a problem does not converge it will be considered unfeasible and the parameter fail will be
% raid by one.
% ttings(3) (standard 0) if 1: if 1 a sub-problem that did not converge but did return a feasible
winter in my heart
% point will be considered convergent. This might be uful if fmincon is having a hard time with
诱惑是什么意思
% a certain problem but you do want some results.
% options1 and options2 are options structures for pha 1 and pha 2.
% For details about the options structure type help optimt.

本文发布于:2023-08-12 05:28:28,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/194342.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:训练   无法   诱惑   口才
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图