图像增强和复原image enhancement and restoration
利用数字图像处理技术可以将图像中感兴趣部分加以强调,对不感兴趣的部分予以抑制,强调后的部分对使用者更为清晰,甚至能给出一定的数量分析或不同颜色的表示。这种技术常称为图像增强。图像复原是通过图像滤波实现的。
图象增强方法
图像增强常用的方法包括直方图均衡化法、图像平滑法、图像尖锐化法和伪彩色法。vipo直方图指的是一幅图像亮暗的分布情况,均衡化就是将一幅分布极不均匀的图像使其均匀化,从而改善图像的质量;平滑化和尖锐化是针对图像的细节和轮廓,平滑化使图像变得柔和,尖锐化使图像变得清晰;伪彩色法是将原为黑白颜色的图像转变为彩色图像,不同灰度用不同的颜色表示,从而可以更明显地分辨出图像中灰度变化的细节。
增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
中文名 图像增强 外文名 image enhancement floppy类 型 频率域法和空间域法 目 的www dict cn 改善图像的视觉效果
image enhancement
图像增强可分成两大类:频率域法和空间域法。
频率域法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
空间域法空间中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增zip怎么读
强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算,基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。
方面方法 编辑
1.对比度变换:线性变换、非线性变换
the wanted
2.空间滤波:图像卷积运算、平滑、锐化
3.彩色变换:单波段彩色变换、多波段彩色运算、HIS
4.多光谱变换:K-L变换、K-T变换
5.图像运算:插值运算、比值运算、分形算法
研究意义 编辑
人类传递信息的主要媒介是语言和图像。据统计在人类接受的各种信息中视觉信息占80%,所以图像信息是十分重要的信息传递媒体和方式。图像传递系统包括图像采集、图像压缩、图像编码、图像存储、图像通信、图像显示这六个部分。在实际应用中每个部分都有可能导致图像品质变差,使图像传递的信息无法被正常读取和识别。例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像整体光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。
图像增强处理是数字图像处理的一个重要分支。很多由于场景条件的影响图像拍摄的视觉
效果不佳,这就需要图像增强技术来改善人的视觉效果,比如突出图像中目标物体的某些特点、从数字图像中提取目标物的特征参数等等,这些都有利于对图像中目标的识别、跟踪和理解。图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。图像增强的应用领域也十分广阔并涉及各种类型的图像。例如,在军事应用中,增强红外图像提取我方感兴趣的敌军目标;在医学应用中,增强X射线所拍摄的患者脑部、胸部图像确定病症的准确位置;在空间应用中,对用太空照相机传来的月球图片进行增强处理改善图像的质量;在农业应用中,增强遥感图像了解农作物的分布;在交通应用中,对大雾天气图像进行增强,加强车牌、路标等重要信息进行识别;在数码相机中,增强彩色图像可以减少光线不均、颜色失真等造成的图像退化现象。
图像工程是一门综合学科,它的研究内容非常广泛,覆盖面也很大。从1996年起,《中国图像图形学报》上连续刊登了对图像工程文献统计分类的综述文章。根据各文献的主要内容将其分别归入图像处理、图像分析、图像理解、技术应用和综述5个大类,并在此基础上对国内15种有关图像工程的重要中文期刊进行了各期刊各类文献的统计和分析。选取的刊
物名有:《CT理论与应用研究》、《测绘学报》、《电子测量与仪器学报》、《电子学报》、《电子与信息学报》、《计算机学报》、《模式识别与人工智能》、《数据采集与处理》、《通信学报》、《信号处理》、《遥感学报》、《中国生物医学工程学报》、《中国体视学与图像分析》、《中国图象图形学报》、《自动化学报》。
mex
从中我们挑选了2005年至2009年的统计数据:在2005年的112期上发表的2 734篇学术研究和技术应用文献中,属于图像工程领域的文献有656篇。在2006年的112期上发表的3013篇学术研究和技术应用文献中,属于图像工程领域的文献有711篇。在2007年的118期上发表的3312篇学术强究和技术应用文献中,属于图像工程领域的文献有895篇。在2008年的120期上发表的3359篇学术研究和技术应用文献中,属于图像工程领域的文献有915篇,2009年的134期上发表的3604篇学术研究和技术应用文献中,有1008篇属于图像工程领域的文献。这些统计数据显示,无论是论文总数还是选取总数都是逐年增长的。论文总数的增长表明刊物的不断发展,选取总数的增加表明图像工程的研究和应用的不断壮大。据统计从1995年至2009年,发表图像处理的文章总计2720篇,占图像工程总体的33.1%;发表图像分析的文章总计2434篇,占图像工程总体的29.6%;发表图像理解的文
章总计1192篇,占图像工程总体的14.5%;发表技术应用文章lucky prize1797篇,占图像工程总体的21.9%;发表综述评论文章74篇,占图像工程总体的0.9%,其中关于图像增强技术方面的文章增长率尤其较高。因此图像增强技术在今后一段时间内仍将是一个热点。
影响图像质量清晰程度有很多因素,室外光照度不均匀会造成图像灰度过于集中;摄像头获得的图像经过数/模转换,线路传输时都会产生噪声污染,图像质量不可避免降低,轻者变现为图像伴有噪点,难于看清图像细节;重者图像模糊不清,连大概物体面貌轮廓都难以看清。因此,对图像进行分析处理之前,必须对图像进行改善,即增强图像。图像增强并不考虑图像质量下降的原因,只是将图像中感兴趣的重要特征有选择性的突出出来,同时衰减不需要的特征,目的就是提高图像的可懂度。
图像增强的方法分为空域法和频域法两种,空域法是对图像中的像素点进行操作,用公式描述如下:
g(x,y)=f(x,y)*h(x,y)
美国留学政策
其中是f(x,y)原图像;h(x,y)为空间转换函数;g(x,y)表示进行处理后的图像。
汽车保险杠修复
频域法是间接的处理方法,是先在图像的频域中对图像的变换值进行操作,然后变回空域。例如,先对图像进行傅里叶变化到频域,再对图像的频谱进行某种滤波修正,最后将修正后的图像进行傅里叶反变化到空域,以此增强图像。可用图1pound the alarm来描述该过程。
图像还原方法
图像复原是通过图像滤波实现的。例如,维纳滤波、各种优化意义下的最佳滤波,以及各种类型的中值滤波都是图像复原的方法
应用
图像增强和复原,是为了使图像经过处理,获得更适于应用的效果,在图像通信、图像显示等领域得到广泛的应用。在实际应用中,由于原始图像不能满足理想的要求,例如照度很不均匀,图像某些部分过亮,某些部分过暗;不同时刻获得的摄像机图像,平均亮度相差过大;运动物体在拍摄中有些移动,以及图像本身中混有受干扰的条纹及噪声亮点等。
图像增强和复原是作为图像预处理的一个重要环节。
图像增强与复原的研究是一个长期的任务。至今为止,理论和技术上还有很多困难。这主要是多项质量指标要求难以同时兼顾。例如消除了图像中的噪声,同时又降低了图像的清晰程度。为此人们正致力于研究许多质量指标都能兼顾的最优方法。