大豆肌醇半乳糖苷合成酶基因GmGolS克隆及非生物胁迫表达分析

更新时间:2023-07-09 13:03:26 阅读: 评论:0

945
2021 34 5Vol. 34 No. 5西"农业学&
SouihwesiChcnaJouenaeoeAgeccueiueaeSccences
文章编号:1001 -4829(2021)5 -0945 -05 DOI :10. 16213/j. cnki. scjas. 2021.5. 006
大豆肌醇半乳糖苜合成酶基因GmGolS
克隆及非生物胁迫表达分析
邱爽1,张军2,何佳琦】,周雨明3,李铭杨】,翟莹1
(1.齐齐哈尔大学生命科学与农林学院,黑龙江齐齐哈尔161006;2.黑龙江省农业科学院畜牧兽医分院,黑龙江齐齐哈尔
161005 ;3-吉林中智九方咨询有限公司,吉林长春130000)
摘要:!目的】本文探索了大豆肌醇半乳糖甘合成酶(GolS )基因与非生物胁迫的关系。【方法】通过RT-PCR 从大豆叶片cDNA
中扩増编码GolS 的基因GmGolS 。生物信息学分析预测该基因及编码蛋白的理化性质。构建系统进化树分析GTS 蛋白的亲缘进
化关系。采用实时荧光定量PCR 技术检测该基因在非生物胁迫下的表达模式。【结果】GmGolS 基因ORF 全长987 bp ,编码328 个氨基酸,分子量38.03 kDa ,等电点5.79。GmGolS 蛋白定位于细胞的叶绿体和/武细胞质中,并且与沙冬青AmGolS 蛋白的亲缘
关系最近。干旱、高盐和低温胁迫均可不同程度的诱导GmGolS 基因的表达,且GmGolS 对干旱胁迫的响应最为明显。【结'】以上
结果表明GmGolS 基因在大豆中可响应多种非生物胁迫,为GmGolS 在大豆抗逆基因工程育种中的进一步应用提供理'依据。关键词:大豆;肌醇半乳糖甘合成酶;非生物胁迫;实时荧光定量PCR 中图分类号:S565.1
文献标识码:A
Cloning  and  Expression  of  Galactinol  Syntha  Gene
GmGolS  in  Soybean  Under  Abiotic  Stress
QU  Shuang 1 % ZHANG  Jun 2 % HE  Jiv-qi 1 %
ZHOU  Yu-ming 3 % LI
片g 1 %ZHAI  YOg 1 *
(1 - Colleve  of  LiO  Science  and  Agro-Porestra , Qiqihar  University , Heilongiang  Qiqihar  161006, China  ; 2- Branch  of  Animal  Husbando
and  Veterinara  of  Heilongiang  Academy  of  Agicultural  Sciences , Heilongjiang  Qiqihar  161005 , China  ; 3 - Jilin  Zhongzhi  Jiufang  Consulting  Co. , Ltd. , Jilin  Changchun  130000, China )
Abstract : [Objective]The  prent  paper  airned  to  explore  the  correlation  betteen  soybean  galactinol  syntha  ( GolS) gene  and  abiotic
stress.【Method ] The  GmGolS  encoding  a  GolS  was  ampliOed  from  the  cDNA  of  leaves  in  soybean  by  RT-PCR. The  physical  and  chemical  propeyies  of  GmGolS  gene  and  the  protein  it  encoded  were  predicted  by  bioinformatics  analysis. PhySaenetic  tree  was  constructed  to  analyze
the  phylogenetic  relationship  of  GolS  proteins. The  expression  pattern  of  GmGolS  under  abOtic  stress  was  detected  by  real-time  auorescence  quantitative  PCR.【Result ] The  ORF  of 
GmGolS  was  987 bp , which  encoded  328 amino  acids , with  the  molecular  weight  of  38- 03 kDa  and
the  isoelectwo  point  of  5.79- The  GmGolS  protein  was  predicted  to  be  localized  in  the  chloroplasts  and/or  cytoplasm , and  it  was  highly  ho- moloaous  to  AmGolS  protein. The  expressions  of  GmGolS  were  induced  by  drought , salt  and  cold  syess, diOerently. Especially , the  re ­
spon  of  GmGolS  to  drought  stress  was  the  most  obvious.【Conclusion ] The  results  indicated  that  GmGolS  could  respond  to  a  vaiety  of  abi ­
otic  stress  in  soybean , which  provOed  a  Weoreticai  basis  for  fuiher  application  in  soybean  resistance  gene  engineering  breeding.
Key  words : Soybean  ; Galactinol  syntha  ; Abiotic  stress  ; Real-tioe  Oudrescence  quantitative  PCR
【研究意义]植物在遭受不良环境条件后,可以
诱导合成大量渗透调节物质来增加植物细胞的渗透
收稿日期:2020 -07 -10
基金项目:黑龙江省普通本科高等学校青年创新人才培养计划 (UNPYSCT-2017153);黑龙江省省属高等学校基本科研业务费 科研项目“植物性食品加工技术特色学科专项” (YSTSXK201878);齐齐哈尔大学研究生创新科研项目
( YJSCX2019050 ,YJSCX2020041 )
作者简介:邱 爽(1995 -),男%山东济宁人%硕士研究生%主要 从事大豆分子遗传育种研究,E-mail : qs187143@ 163- com ; *为 通讯作者:翟 莹(1982 -),副教授,主要从事大豆分子遗传育 种研究%E-mail :fairy39809079@ 126- com &
压,提高植物抵抗胁迫的能力,从而维持植物自身的
代谢和生长发育。其中棉子糖系列寡糖(Raffino  family  oSgosacchaydes , RFOs)就是这些渗透调节物
质的典型代表,它们是高等植物中含量仅次于蔗糖 的一类可溶性糖。肌醇半乳糖D 合成酶(Galactint
syntha, GolS )是RFOs 生物合成途径中的关键
酶[1]&大豆作为一种重要的经济作物,其GolS 基因
的功能鉴定对于大豆RFOs 代谢途径及大豆抗逆机
制的研究都具有重要意义。【前人研究进展]目前
已有大量关于GolS 基因受逆境胁迫诱导表达的报
946!"#业学&34
,且超异达该基的提高基因植物的&芥中7种GolS基因,其中AtGolSl和AtGolS2可以被干旱和高盐胁迫导上调表达,At(NlS3胁迫诱导上调表达)2*&AtGolSl与AtGolS2达基因植株中肌醇
乳糖D和棉子均增加,对氧胁迫的
叫AtGolS2在水稻中异达还
基因水稻在干旱胁迫下的产量⑷。麦Ta(NlS3的表达受外源脱落酸、低温和盐胁迫的诱导,同时还ZnC/和CuC/所导,通
氧的调控,转基因植株锌胁迫的耐受
[5]&GolS基达的调控机为,目
发现多种植物转录因子调控其表达,例如HSF、DREB和WRKY等)6勺&目为止,大豆中肌醇半乳糖D合的研究&【研究点】本研究一个大豆GolS基因GmGolS,并对其非生物胁迫下的表达行检测&【
superdisk的】此研究为GmGolS基在大基育种中的进一步应用提供理论依据&
1材料与方法
1.1基因的克隆
在NCBI( https://'bi.v/ Blast,cgi)中获得一个功能未被鉴定的大豆GolS基因mRNA序列(Genebank登录号:NM001251098)&使用RNAiso Plus试剂(Takara)提取大豆叶片总RNA,使用cDNA录试剂盒(Novoprotein)合成第一链cDNA&根据GmGolS基阅读框(ORF)计引物,上游引物为5,-GGAATTC:HTTGATGGCTCCTAATATCACCACTG3,下游弓|物为5,-GGAITCTTAAGCAGCAGATGGGGC-3'(其中下划线部别代表限位点Nde I和E co R I),第一链cDNA为模基因的全长ORF序列&PCR置为94j8min;94j 40s,56j40s,72j1min,此步骤进行30个循环$72j延伸8min o PCR产物连接至载体pMD18-T(Takara)并转化大肠杆菌DH5#&挑取阳并提取质粒,经Nde I和E co R贡粒进行,阳粒送上海生测序鉴定& 1.2生学分析
蛋白的分子量和等电点使用在线软件ExPASy (expasy/tools/pi_tool.html)进行预测;蛋白的亚细胞定位使用在线软件PSORT( https:// wo/psoO.hgc.jp/"进行预测;在NCBI数据库(hr tys://bd v//i)搜索植物GolS基因;蛋白系统进化树使用MEGA5.0软件行构建&
1-3非生物胁迫处理
在25j培养室内,配Hoagland营养液水培大豆幼苗,光照条件为16h光照/8h黑暗&待大豆幼苗的第一时,进行生物胁迫处理:将大幼苗置于含15%PEG8000的营养液中模拟干旱胁迫;将大幼苗置于含150mmol/L NaCi的营养液中进行高盐胁迫;将大豆幼苗置于4 j培养箱中进行胁迫&分别在处理的0(即未处理"、:1、2、5、:10和24h剪取0.1g第一.出,迅速置于液氮中,-80j超保-用&
1-实时荧光定量PCR
使用RNAiso Plus试剂!Takaro"提取上述各样本的总RNA,通和OD260/280
测提取的RNA&使用cDNA反转录试剂盒(Novoprotein)合成第一链cDNA。根据GmGolS基ORF丿计实时荧光定量PCR引物。上游引物为5'-TCTAAGCCTTGGAGGTACACTGG-3',游
弓I物为5,-GGCACGGACGAACTTGACTTC-3'选择大豆组成型表达基因/3-Tubuin( GenBank登录号:
生硬的意思GMU12286)作为内参基因(F:5'-GGAAGGCT TTCT-TGCATTGGTA-3',R:5'-AGTGGCATCCTGGTACTGC-3')。在BII-RAD CFX96Real-Time PCR仪上,对GmGolS基因在非生物胁迫下的表达量进行测。
时荧光定PCR如:2xTB Gaeen
Premix Ex Taq((Takara)10'l、cDNA2'/上下游引物各0.8'l,补水至20'1。如口:95j 30s;95j5s,58j30s,40个环。所有处理均做3次重复,采用2-AACs法计算基因的-达。
Ml M2
M:DL2000分子量标记物;1:GmGolS PCR扩增产物;2:pMD18-T-GmGolS双酶切产物
M:DL2000Marker;1:PCR ampUfication products of GmGolS;2: Products of double digestion of pMD18-T-GmGWy
图1大豆GmGolS基因的克隆
Fig.1Cloning of
GmGolS
5
邱 爽等:大豆肌醇半乳糖D 合成酶基因GmGolS 克隆及非生物胁迫表达分析947
1 ATGGCTCCTAATATCACCACTGTCAAAACCACCATCACCGACGCTCAAGCCAAGGTCGCCACCGATCATGGTCGTGCCTACGTCACCTTC
1 MAPNITTVKTTITDAQAKVATDHGRAYVTF 91 CTCGCCGGAAACGGTGACTATGTGAAAGGTGTCGTTGGCTTGGCAAAAGGTCTGAGAAAAGTGAAGAGCATGTACCCTCTGGTGGTTGCA
31
LAGNGDYVKGVVGLAKGLRKVKSMYPLVVA 181 GTGCTACCCGATGTTCCCCAAGATCACCGCAACATTCTCACCTCCCAAGGHGCATTGTTAGAGAGATTGAGCCCGTGTACCCCCCAGAG 61 VLPDVPQDHRNILTSQGCIVREIEPVYPPE
271
AATCAAACCCAGTTTGCCATGGCATATTACGTCATCAACTATTCCAAGCTACGTATTTGGGAGTTTGTGGAGTACAGCAAGATGATATAC
91 NQTQFAMAYYVINYSKLRIWEFVEYSKMIY 361
CTAGACGGTGATATCCAAGTHTTGACAACATTGACCACTTGTTTGACTTGCCTGATAACTACTTCTATGCGGTGATGGACTGTTTCTGT
121 LDGDIQVFDNIDHLFDLPDNYFYAVMDCFC 451
GAGCCAACTTGGGGCCACACTAAACAATATCAGATCGGTTACTGCCAGCAGTGCCCCCATAAGGTTCAGTGGCCCACTCACTTTGGGCCC 151 EPTWGHTKQYQIGYCQQCPHKVQWPTHFGP
541
AAACCTCCTCTCTAnTCAATGCTGGCATGTTTGTGTATGAGCCCAATTTGGCTACTTACCGTGACCTCCTTCAAACAGTCCAAGTCACC 181 KPPLYFNAGMFVYEPNLATYRDLLQTVQVT
631 CAGCCCACTTCCTTTGCTGAACAGGAHTTTTGAACATGTACTTCAAGGACAAATATAGGCCAATTCCTAATGTCTACAATCTTGTGCTG 211
QPTSFAEQDFLNMYFKDKYRPIPNVYNLVL
721 GCCATGCTGTGGCGTCACCCTGAGAACGTTGAGCTTGACAAAGTTAAAGTGGTTCACTACTGTGCTGCTGGGTCTAAGCCHGGAGGTAC
241 AMLWRHPENVELDKVKVVHYCAAG  冃 KPWRY 811
safetyfirst
ACTGGGAAGGAGGAGAATATGGAGAGAGAAGATATCAAGATGTTAGTGAAAAAGTGGTGGGATATATATGAGGATGAGACHTGGACTAC
271 TGKEENMEREDIKMLVKKWWDIYEDETLDY
901 AACAATCCACTCAATGTGGATAAGTTCACTGCGGCACTTATGGAGGTTGGTGAAGTCAAGTTCGTCCGTGCCCCATCTGCTGCTTAA
301
NNPLNVDKFTAALMEVGEVKFVR  A  P  S  A  A  *
阴影代表猛离子结合序列;方框代表保守的丝氨酸磷酸化位点;下划线代表C 端保守疏水五肽;*代表终止密码子
The  mangane-binding  motif  was  shown  by  shadow  ; The  conrved  rine  phosphorylation  site  was  V  box  ; The  conrved  hydrophobic  pentapeptide  in
the  C-terminal  reyion  was  underlined  ; Stop  codon  was  shown  V  *
图2 GmGolS 的核,酸及氨基酸序列
Fig. 2 Nucleotide  and  deduced  amino  acid  quence  of  GmGolS
51
100
100 — AmGolS(ABF66656)
——GmGolS(NP001238027)
ZmGolS1(AAQ07248)
MfGolS(ACM50915)
33
100VhGolS(AGW51291)PsGolS(CAB51130)
93
such asBhGolS(ACJ15472)
sy是什么意思42
CaGolS1(ADM92588)
99
CsGolS1(AGQ44777)100
GhGolS(AFG26331)100MeGolS(AGC51778)
NtGolS2(AHM22934)
AtGolS(AAC33195)
0.2
100TaGolS(BAF51565)
图3
Fig.3
2结果与分析2019高校河北录取位次
2.1 GmGolS 基因的克隆
如图1所示,从大
cDNA 中 获得一
条大约1000 bp 的 带,与NCBI 数据库中 的
GmGolS 基
(987 bp )大 合。将其 接
植物GolS 蛋白系统进化树
Phylogenetic  tree  of  Golf  proteins
subdivide
克隆载体pMD18-T (图1),经测序验证,扩增所得产 物正是GmGolS 基&
2.2 GmGolS 序列及进化分析
由图2显示,GmGolS 基因ORF 全长987 bp ,编
码328个 基酸,分子量38.03 kDo , 点5.79。 GmGolS 蛋白含有一个保守的猛离子结合 DXD
,
948西"农业学&34卷
*的<;衩
o
o
o
o
o
o
o
o
o
o
8
6
4
2
8
6
4
2
11
11
11
11
11 IQAZ UESSaldxe 2
冷12
处理时间(h)
Treatment time
*
的<
处理时间(h)
Treatment.time
*
的<
聚•
处理时间(h)
Treatment.time
图4GmGolS基因在干旱&A)、高盐(B)及低温(C)胁迫处理下的表达Fig.4Expression of GmGolS under drought%high salt and cold stress
一个保守的丝氨酸磷位点及一个C末端疏水性的五APSAA%都是植物GolS的型特征)10-11]&定位预测结果显示, GmGolS蛋白定位于的和武中。
将GmGolS蛋白氨基与其他植物中的13个GolS蛋白氨基行&由3显示,GmGolS蛋白与沙冬青AmGolS蛋白的亲缘关系最近,其次与玉米ZmGolSl蛋白也具有比较近的亲缘,与芥AtGolS蛋白和小麦TaGolS蛋白的亲缘最远。
2-  3 GmGolS在非生物胁迫下的表达
大豆幼苗经干旱、高盐和胁迫处理后,利用实时荧光定量PCR对GmGolS的达行检测。结果显示:干旱处理后,GmGolS导达且响应最为明显,在处理后2h达到最大值,是对照0h的155(4-A);高盐和处理
后,GmGolS 也导表达,但表达的升高均不超照的10倍(4-和4-P)o由推测GmGolS主要在大干旱胁迫时发挥&
3讨论
RFOs代谢途径与植物生长发育及植物抗逆性之间关系密切&GolS是RFOs生物合成起始的
限速酶,它通过催化UDP-半乳糖和肌醇合成肌醇半乳糖D,为,在棉籽糖合和水苏合的作用蔗糖合成棉籽糖和水苏寡)12*&溶作为中的渗透调节物质,还作为植物环境的物[⑶&
GolS属于多基因家族,仅在拟南芥中就发现了10个编码GolS的基因〔14*,大中也个GolS 基因(会另文发表)&GolS基在植物应对胁迫时的尽[2,15],即不同的GolS基因
的逆境条件所诱导,同一境
时诱导多种GolS基的表达,所的GolS基的也存在交叉[⑹&物种间的GolS
的相似性,都一个对于GolS酶活至关重要的猛离子结合DXD)17],一个保的丝磷位点及一个C末端疏水性的五APSAA&定位的意味基因上会存在差异。GmGolS蛋白定位于叶绿和武中,这与研究结果〔18]&基达测结果显示,GmGolS对干旱胁迫的应答要明显于盐和胁迫的应答,是一个型的干导型基,推测其在大
生理中起到重要作用。也报大量GolS提基因植物的研究。例如在水稻中超表达
芥AtGolS2使基因水稻显著提〔4];在烟草中超表达牛耳草BhGolSl样使转基植株显著提高网。玉米ZmGolS2干胁迫导基芥的,研究发现其启动子上存在2个脱水响应元件DRE,Zm-DREB2A-与其中一个DRE元件结合从而上调ZmGolS2的表达〔20*。而本研究中的GmGolS基因上游是否也存在转录因子的调控,其 的调控机
如何,还一步研究。
4结论
研究从大中GoeS的基
GmGolS。其ORF全长987bp,328个氨基酸,分子量38.03kDa&GmGolS蛋白与沙冬青AmGolS 蛋白的亲缘最&干、盐和胁迫均导GmGolS的表达,且GmGolS对干胁迫的响应最为明显&
文献:
)1]ElSayed A I,Rafudeen M S,Golldack    D.Physiological aspects of raffino family oligosaccharides in plants:Protection片ainst abiotic stoss)J*-Pl片t Biology,2014,16(1):1-8.
)2*Taji T,Ohsuml C,Iuchl S,et片Important roles of drought-md cold-inducible genes for galactinol syntha in stress tolerance in Ary-bb Pogsis sGaSana) J*-The Plant Oournai,2002,29(4):417-426­)3*Nishizawa Y A,Yabuta Y,Shigeoka S-The contriOution of carbohy­drates including raffino family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage)J*-Plant
Signal
5邱爽等:大豆肌醇半乳糖D合成酶基因GmGolS克隆及非生物胁迫表达分析949
Behavior,2008%3(11):1016-1018.
)4*Selvvraj M G,Ishizaki T,Valencia M,et al.Overexpression of an
盖德英语Arabidopsis ShaSana galactinol syntha gene improves drought toler­ance in Wansyenic rice and incread grain yielk in the field)J*.
Plant Biotechnology Journal,2017,15(11):1465-1477.
)5*Wang Y,Liu H,Wang S,et al.Overexpression of a common wheat gene GALACTINOL SYNTHASE3enhances tolerance to zinc in Arabb dopsis and rice through the modulation of reactive oxygen species pro­duction)J*.Plant MWeculor Bitogy Reporter,2016,34(4):794-806. )6*Panikulangara T J,Eggers-Schumacher G,Wunderlich M,et al.
Galactinol synthal,a novel heat shock factor taraet gene responsi­ble for heat-induced synthesis of raffino family oligosaccharides in Arabidopsis)J*.Plant Physiology,2004,136(2):3148-3158.
)7*Maruyama K,Takeda M,Kidokoro S,et al.Metabolic pathways in­volved in cold acclimation identified by inteyrated analysis of metabo­lites and WanscOpW reyulated by DREB1A and DREB2A)J*.Plan­Physiology,2009,150(4):1972-1980.
)8*Wang L,Shang H,Liu Y,et al.A role for a cell wall localized gly­cine-rich protein in dehydration and rehydration of the resurrection
高管英文
plant Boea hygromethca)J*.Plant Biology,2009,11(6):837-848*
)9*Hoekema A,Hitch P R,Hooykaas P J J,et al.A binara plant vec­tor strategy bad on paration of eic-and T-reyion of the Agobacte-ocm tumefadees Ti-plasmid)J*.Nature,1983,303(5913):179-180.
)10*Sun Z,Qi X,Wang Z,et al.Overexpression of TsGOLS2,a ga-
lactinol syntha,in ArabbopsG ShaSana enhances tolerance to high
salinity and osmotic stress)J*.Plant Physiology and Btchemistm,
2013,69:82-89.
)11*dos Santos T B,Budzinski1G,Petkowicr C L,et al.Expression of
three galactinol syntha isoforms in Coffee arabica L.and accumula­
tion of raffino and stachyo in respon to abiotic stress)J*.
Plant Physiology and Biochemiste,2011,49(4):441-448.)12*Peterbauer T,Richter A.Btchemistre and physiology of raffino
family oligosaccharides and galactosyl cyclitols in eds)J*.Seed
Science Rearch,2001,11(3):185-197.
)13*Sheen J,Zhou L,Jiang J    C.Sugar as signaling moleculaes)J*.
Current Opinion in Plant Biology,1999,2(5):410一418.
)14*Kaplan F,Kopka J,Sung D Y,et al.Transcript and metabolite
profiling during cold acclimation of Arabidopsis reveals an inWicate
relationship of cold-regulated gene expression with modifications in
metabolite content)J*.The Plant Journal,2007,50(6):967-
981.
)15*Gu H,Lu M,Zhang Z P,et al.Metabolic process of raffino femi-
ly oligosaccharides during cold stress and mccvem V cucumber leaves )J*.Journal of Plant Physiology,2018,224-225:112-120.
)16*王海波,邹竹荣,龚明•小桐子肌醇半乳糖D合成酶的基因克隆及其生物信息学分析和功能初步验证)J*.生物技术,2015,
31(7):91-100.
)17*Busch C,Hofmann F,Selzer J,et al.A common motif of eukamot-
ic glycosyltranferas is esntial for the enzyme activity of larae
clostridial cytotoxins)J*.The Journal of Biological Chemiste,1998,
273(31):19566-19572.
)18*冯睿杰,侯丽霞,郭扬,等.葡萄肌醇半乳糖D合成酶基因VvGolS2-4的克隆及表达特性分析)J*.华北农学报,2017,32
(2):87-95.
)
19*Wang Z,Zhu Y,Wang L,et al.A WRKY Wanscriphon factor par­
ticipates in dehydration tolerance in Boee hygromethca by binding to
the W-box elements of the galactinol syntha(BhGolS1)promoter
ugu)J*.Paanta,2009,230(6):1155-1166.
)20*Gu L,Zhang Y,Zhang M,et al.ZmGOLS2,a taraet of transcrip­
tion factor ZmDREB2A,Wfe similar protection against abiotic stress
as ZmDREB2A) J*.Plant Molecular Biology,2016,90(1-2): 157-170.
(责任编辑陈虹)

本文发布于:2023-07-09 13:03:26,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/171991.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:基因   胁迫   大豆   植物   表达
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图