17>>##数据集的制作18import torch
19batch_size = 10
20train_loader = torch.utils.data.DataLoader(train_datat, batch_size=batch_size, shuffle=True)
21test_loader = torch.utils.data.DataLoader(val_datat, batch_size=batch_size, shuffle=Fal)
22
23
24from matplotlib import pyplot as plt
25import numpy as np
26def imshow(img):
27 print("图⽚形状:",np.shape(img))
28 npimg = img.numpy()
29 plt.axis('off')
30 plt.anspo(npimg, (1, 2, 0)))
31
32class = ('T-shirt', 'Trour', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle_Boot')
33sample = iter(train_loader)
34images, labels = ()
tuxedo
35print('样本形状:',np.shape(images))
36print('样本标签:',labels)
37imshow(torchvision.utils.make_grid(images,nrow=batch_size))
38print(','.join('%5s' % class[labels[j]] for j in range(len(images))))
2.2 搭建LSTM层,并引⼊注意⼒层
1#定义myLSTMNet模型类,该模型包括 2个RNN层和1个全连接层
2class Module):
3 def __init__(lf,in_dim, hidden_dim, n_layer, n_class):
4 super(myLSTMNet, lf).__init__()
5 #定义循环神经⽹络层
6 lf.lstm = LSTM(in_dim, hidden_dim, n_layer,batch_first=True)
7 lf.Linear = Linear(hidden_dim*28, n_class) #定义全连接层
8 lf.attention = AttentionSeq(hidden_dim,hard=0.03) #定义注意⼒层
9
10 def forward(lf, t): #搭建正向结构
11 t, _ = lf.lstm(t) #进⾏RNN处理
12 t = lf.attention(t)
13 shape(t.shape[0],-1)
14# t = t[:, -1, :] #获取RNN⽹络的最后⼀个序列数据
15 out = lf.Linear(t) #进⾏全连接处理
16 return out
2.3 接着搭建注意⼒机制class
1class Module):
2
3 def __init__(lf, hidden_dim,hard= 0):
4 super(AttentionSeq, lf).__init__()
5 lf.hidden_dim = hidden_dim
6 lf.den = Linear(hidden_dim, hidden_dim)
7 lf.hard = hard
8
9 def forward(lf, features, mean=Fal):
10 #[batch,q,dim]
11 batch_size, time_step, hidden_dim = features.size()
12 weight = Tanh()(lf.den(features))
pms
13
14 # mask给负⽆穷使得权重为0
15 mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
16# mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step, hidden_dim)
17 mask_idx = mask_idx.unsqueeze(-1).repeat(1, 1, hidden_dim)
18
19#注意这⾥torch.where意思是按照第⼀个参数的条件对每个元素进⾏检查,若满⾜条件,则使⽤第⼆个元素进⾏填充,若不满⾜,则使⽤第三个元素填充。20#此时会填充⼀个极⼩的数----不能为零,具体请参考softmax中关于Tahn。
21#torch.full_like是按照第⼀个参数的形状,填充第⼆个参数。
22 weight = torch.where(mask_idx== 1, weight,
23 torch.full_like(mask_idx,(-2 ** 32 + 1)))
24 weight = anspo(2, 1)
25
26#得出注意⼒分数
27 weight = Softmax(dim=2)(weight)
28 if lf.hard!=0: #hard mode
29 weight = torch.where(weight>lf.hard, weight, torch.full_like(weight,0))
30
31 if mean:
32 weight = an(dim=1)
33 weight = weight.unsqueeze(1)
34 weight = peat(1, hidden_dim, 1)
addle
35 weight = anspo(2, 1)
36#将注意⼒分数作⽤在输⼊值上
37 features_attention = weight * features
38#返回结果
39 return features_attention
40#实例化
41network = myLSTMNet(28, 128, 2, 10) # 图⽚⼤⼩是28x28(输⼊序列长为28),每层放128个LSTM Cell,构建2层由LSTM形成的⽹络,最终分为10类。
2.4 输⼊数据并训练模型(与之前⼀致)
1device = torch.device("cuda:0" if torch.cuda.is_available() el "cpu")
2print(device)
<(device)
4print(network)#打印⽹络
5
6criterion = CrossEntropyLoss() #实例化损失函数类
7optimizer = torch.optim.Adam(network.parameters(), lr=.01)
8
9for epoch in range(2): #数据集迭代2次
10 running_loss = 0.0
11 for i, data in enumerate(train_loader, 0): #循环取出批次数据
12 inputs, labels = data
13 inputs = inputs.squeeze(1)
14 inputs, labels = (device), (device) #
仁爱英语八年级上册
15 _grad()#清空之前的梯度
16 outputs = network(inputs)
17 loss = criterion(outputs, labels)#计算损失
18 loss.backward() #反向传播
19 optimizer.step() #更新参数
20
21 running_loss += loss.item()
22 if i % 1000 == 999:
23 print('[%d, %5d] loss: %.3f' %
24 (epoch + 1, i + 1, running_loss / 2000))
25 running_loss = 0.0
26
27
28
29
30print('Finished Training')
31
32
33#使⽤模型
34dataiter = iter(test_loader)
35images, labels = ()
decent的意思36
37inputs, labels = (device), (device)
38
39
40imshow(torchvision.utils.make_grid(images,nrow=batch_size))
41print('真实标签: ', ' '.join('%5s' % class[labels[j]] for j in range(len(images)))) 42inputs = inputs.squeeze(1)
43outputs = network(inputs)
44_, predicted = torch.max(outputs, 1)
45
46
47print('预测结果: ', ' '.join('%5s' % class[predicted[j]]
48 for j in range(len(images))))
49
50
京翰1对151#测试模型
52class_correct = list(0. for i in range(10))
53class_total = list(0. for i in range(10))
_grad():
55 for data in test_loader:
56 images, labels = data
57 images = images.squeeze(1)
58 inputs, labels = (device), (device)
59 outputs = network(inputs)
60 _, predicted = torch.max(outputs, 1)
61 predicted = (device)
62 c = (predicted == labels).squeeze()
63 for i in range(10):besides是什么意思
63 for i in range(10):
64 label = labels[i]
65 class_correct[label] += c[i].item()
66 class_total[label] += 1
67
68
69sumacc = 0
70for i in range(10):
71 Accuracy = 100 * class_correct[i] / class_total[i]
72 print('Accuracy of %5s : %2d %%' % (class[i], Accuracy ))
73 sumacc =sumacc+Accuracy
74print('Accuracy of all : %2d %%' % ( sumacc/10. ))
>欧普拉