孤立词语音识别算法研究和实现(可编辑)

更新时间:2023-06-30 19:31:08 阅读: 评论:0

孤立词语音识别算法研究和实现
硕士学位论文
孤立词语音识别
算法的研究和实现
THE RESEARCH AND
IMPLEMENTATIONOF  ALGORITHM  OFISOLATED WORD SPEECH  RECOGNITION
李硕ramadan
哈尔滨工业大学
2010年12月国内图书分类号:TM431.2 学校代码:10213
国际图书分类号:621.3 密级:公开硕士学位论文
孤立词语音识别
paranormal activity 2
英语造句
算法的研究和实现
英语作文 春节硕士研究生: 李硕
导师: 王明江教授
申请学位: 工学硕士
学科专业: 微电子学与固体电子学
所在单位: 深圳研究生院
答辩日期: 2010 年 12 月
授予学位单位: 哈尔滨工业大学 Classified Index: TM431.2
U.D.C: 621.3Disrtation for the Master Degree of Engineering
THE RESEARCH AND
IMPLEMENTATIONOF  ALGORITHM  OFISOLATED WORD SPEECH
scorpio
RECOGNITIONCandidate: Lishuo
Supervisor: Prof. Wang Mingjiang
Academic Degree Applied for: Master of Engineering
Microelectronics and Solid-State
Specialty:
Electronics
Affiliation:Shenzhen Graduate School
Date of Defence: December, 2010
Degree-Conferring-Institution: Harbin Institute of Technology  哈尔滨工业大学工学硕士学位论文
摘要
语音识别技术以语音信号处理为研究对象。本文主要研究小词汇量、非特定人、孤立词的汉语语音识别算法与实现。
文章首先介绍了隐马尔可夫模型HMM,包括 HMM 的参数估计,Viterbi
算法等。接着阐述了如何利用 HMM 构建语音识别系统,分别讨论了基于离散HMMDHMM和连续 HMMCHMM的孤立词语音识别系统。 CHMM 和 DHMM
的差别在于观测值的概率分布函数。DHMM 的概率分布函数是离散的概率值, 而对 CHMM 则是连续的概率密度,CHMM 昀常采用的概率密度函数是高斯混
合模型GMM。DHMM 具有运算量小、存储少的优点,但由于 DHMM 存在量
化误差,识别精度较 CHMM 低。
在孤立词语音识别系统中,词表外OOV的语音输入将会对语音识别系统产
gigolos
生难以预料的结果,这是设计中需要避免的,因此研究拒识算法变得十分重要。
拒识算法主要有两种方法,一是利用废料模型,二是利用已有的识别结果进行
辨识。第一种方法需要额外训练废料语音,而且一般难以选择合适的废料语音。
因此实际应用中一般选择第二种方法。本文通过研究识别结果,昀终通过识别
概率中的昀大和次大概率差作为拒识算法的判别依据。pelicans
在 PC机上难以模拟在实际设备上所使用的语音识别系统,例如背景噪声的干扰,语音信号的实时输入和实时处理,本文介绍了在 TI 公司的 DM642 DSP
上实现孤立词语音识别的方法,包括语音信号的输入,以及 VAD算法的实现等。
关键词: 孤立词;语音识别;隐马尔可夫;拒识算法
-I- 哈尔滨工业大学工学硕士学位论文
Abstract
The rearch object in Speech recognition technology is bad on speech signal
processing. This paper studies the algorithm and implementation of small vocabulary,
speaker-independent, Chine words, isolated word recognitionThe article first introduced the Hidden Markov Model HMM, including HMM  parameter estimation, Viterbi algorithm. Then explains how to build speech
recognition system using HMM.HMM were discusd bad on discrete HMM  DHMM and continuous HMM CHMM.The main difference between CHMM and  DHMM is that the probability distribution function of obrvations. DHMM’ s
probability distribution function of obrvations is discrete probability, while the
深圳的翻译公司CHMM is a continuous probability density, In commonly CHMM us Gaussian
mixture model GMM as the probability density function. DHMM has the  advantages of the small computational load, the less of storage, but the existence of
quantization error will lead to the lower recognition accuracy compare to CHMMIn the practical application of speech recognition systems, the speech of out of
vocabulary OOV input on voice recognition system will cau unpredictable results,
which is need to avoid in the design,so studying rejection algorithm become very
important. In general, the realization of rejection algorithm has two ways, one is to考研如何调剂
u garbage model, the cond is the u of the existing results of the recognition. The
first method requires additional training data, and generally difficult to lect the
appropriate data of garbage. Therefore, in general application we choo the cond
西班牙舞method. This paper studied the results of recognition, and ultimately chon the
difference between largest and cond largest between the recognition probability as
the basis of rejection algorithmIt is difficult to simulate the practical application environment of the speech
recognition systems, such as the interference of background noi, voice, real-time
input and real-time signal processing. This paper introduced the implementation of
isolated speech recognition on TI' s DM642 DSP ,including how to input the speech

本文发布于:2023-06-30 19:31:08,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/162899.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:政策执行模型
下一篇:ROM的中文解释
标签:语音   识别   算法   研究   孤立   方法   学位   工学
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图