2021年5月Journal on Communications May 2021 第42卷第5期通信学报V ol.42No.5频谱知识图谱:面向未来频谱管理的智能引擎
孙佳琛,王金龙,丁国如,陈瑾,龚玉萍
(陆军工程大学通信工程学院,江苏南京 210007)
学位英语考试成绩查询
摘 要:针对当前频谱管理中表征方式较单一、管理方式对人的经验依赖性较强、管理效率和精准度较低等问题,面向未来频谱管理的自动化、智能化、精准化需求,将知识图谱理论与技术引入频谱管理中,给出了频谱知识图谱的概念和其依赖的频谱知识体系,以及三元组形式的表示方法,构建了由图谱层、设备层和场景层构成的基于频谱知识图谱的智能频谱管理框架,探讨了基于频谱知识图谱的用频推荐、频谱搜索、频谱问答等典型应用。仿真实验表明,频谱知识图谱能在用频推荐中发挥知识引导的作用。
关键词:频谱管理;知识图谱;认知图谱;认知无线电;用频推荐;频谱搜索;频谱问答
中图分类号:TN92
文献标识码:A
DOI: 10.11959/j.issn.1000−436x.2021084
kitchen
Spectrum knowledge graph: an intelligent engine facing
future spectrum management
SUN Jiachen, WANG Jinlong, DING Guoru, CHEN Jin, GONG Yuping
College of Communications Engineering, Army Engineering University, Nanjing 210007, China Abstract: To solve the issues of simple reprentations on spectrum situation, much dependence on artificial experience in manual management and low efficiency and accuracy in the current spectrum management, meeting the requirements of automation, precision and real time for future spectrum management, the theory and technology of knowledge graph were introduced into spectrum management. The definition of spectrum knowledge graph, the knowledge schema it de-pends on and its reprentation in the form of triples were propod. The intelligent spectrum management framework bad on spectrum knowledge graph, consisting of the graph layer, the equipment layer and the scenario layer, was con-structed. Typical applications bad on spectrum knowledge graph were discusd, including the recommendation system for spectrum usage, the arch engine on spectrum management, and question answering for spectrum management. Ex-periments demonstrate the spectrum knowledge graph can play a role of guidance by spectrum knowledge in spectrum usage recommendation.
Keywords: spectrum management, knowledge graph, cognitive graph, cognitive radio, recommendation for spectrum usage, arch on spectrum management, question answering for spectrum management
1 引言
中英文在线翻译频谱管理是指综合运用行政、技术和工程等手段对电磁频谱使用进行筹划、组织、协调和控制,以免用频设备、系统及业务间的相互干扰[1]。早期的频谱管理主要依靠人工制定频谱政策、用频规则,通过为用频设备、系统和业务统一划分频段、指配频率来实现,适用于用频需求有限、电磁环境
收稿日期:2020−08−19;修回日期:2020−11−09
基金项目:科技创新2030−“新一代人工智能”重大项目(No.2018AAA0102303);国家自然科学基金资助项目(No.U20B2038, No.61871398, No.61931011);江苏省自然科学基金杰出青年基金资助项目(No.BK20190030)
Foundation Items: The Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence” of China (No.2018AAA0102303), The National Natural Science Foundation of China (No.U20B2038, No.61871398, No.61931011), The Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (No.BK20190030)
·2·通信学报第42卷
相对简单的情况。这种条块分割的静态管理模式侧重计划分配、被动响应,人工成本高,管理效率较低,时效性较差,难以适应用频需求的爆炸式增长及电磁环境的快速变化,还会导致频谱使用不平衡、频谱利用率较低等问题。
为解决上述问题,可以利用频谱空穴来实现动态频谱接入。认知无线电是实现动态频谱接入的关键技术,它为未授权用户或认知用户提供了以机会的方式与授权用户共享无线频谱资源的能力[2-3]。在部分频谱已经固定地划分给授权用户的情况下,认知用户可以对电磁环境进行感知,检测未被使用的频谱(即频谱空穴),估计信道状态信息、预测信道容量,从中选择最优可用频率并接入,与授权用户实现频谱共享。在此过程中,认知用户是被赋予了观察、学习、适应、决策等能力以及支持在不同频率上收发信号的可重构性[4]的智能体。这也为频谱管理的智能化确立了“频谱感知−频谱决策−频谱共享−频谱移动”的主要框架[5]。
进一步地,人工智能技术的蓬勃发展为频谱管理模式的变革带来了新的机遇[6],深度学习、群体智能、区块链等新兴技术在频谱数据分析、控制信道分配、防欺骗决策等方面表现出优越性,使频谱机会发现和利用的能力不断提升。具体而言,深度学习能够从原始数据中自动解析出更加复杂的统计模型,如Yu等[7]基于深度学习长短期记忆模型挖掘并利用频谱时间序列数据中的中长期频谱特征,提升
了频谱预测的性能。群体智能理论与方法则能使分布式个体独立行动并根据环境反馈自适应地调整自身行为,所有个体互相协调耦合,最终形成自发连贯的系统智能[8]。Chen等[9]提出了一种基于群体智能的信道选择算法,利用邻居定时广播消息作为信息素对认知用户常用信道的质量进行排序,通过仅基于局部信息的节点协作解决了认知无线网络中控制信道资源分配的问题。区块链的去中心化存储、分布式共识等关键技术使私有无线设备参与贡献频谱数据、实现频谱可信安全共享成为可能。杨健等[10]将区块链技术应用到大规模超密集移动互联网的频谱共享中,将海量个人无线设备联网构成频谱设备网络,定义“频谱币”作为设备采集频谱数据的奖励,并提出由感知节点共识融合、验证节点共识验证、簇头节点共识确认构成的分布式共识机制。
频谱管理正在经历从人工/手动到机器自动化/自主智能、从静态封闭分配到动态开放共享、从集中统一指派到分布自主协同的转变,但在这一过程中仍面临以下挑战。
1) 频谱空间建模表征方式比较单一,难以适应错综复杂的电磁环境。当前,频谱态势常用频谱图来描绘,建模时主要关注可用频谱资源的时−频−空分布,具体表现为频谱的忙闲状态、辐射功率、接入协议、调制方式等。随着用频设备/系统的类型和数量不断增长,电磁频谱空间日益错综复杂,演变成多主体、多因素、多变量构成的互为输入输出的复杂系统。当前频谱建模和表征方式难以厘清频谱空间内各主体间的多元关系以及主体受因素、变量的深层影响,缺乏系统性频谱知识的精炼。
圆脸适合剪什么发型
2) 频谱管理方式对于人的经验依赖性较强,难以实现自动化、智能化的频谱管理效果。静态划分的传统频谱管理模式依赖于人工操作和人员经验。在动态协同的智能频谱管理模式中,虽然频谱感知、频谱预测、频谱决策等各个环节针对各自不同的优化目标都有技术性的解决方法,但各个环节间智能算法的输入输出仍然依赖人工衔接和监督,许多操作技巧和实践经验只能被频管人员掌握,用频设备既无法理解频谱认知环路中流动的数据的语义,也无法在数据计算的基础上结合这些技巧经验进行思考,并未实现自动化的频谱共享。
3) 频谱管理效率较低,难以满足精准化、实时性的频谱管理要求。现有频谱管理方法主要是从频谱数据中建立统计模型,挖掘统计规律来进行频谱预测、频谱决策,这些模型驱动的方法存在模型复杂度、精准度、可解析性等难以调和的内在矛盾。并且,针对不同的频谱管理场景,由于缺乏系统性的频谱知识,现有模型的泛化能力欠佳。此外,对于频谱管理中的大量优化计算,多样化频谱数据的格式难以统一,频谱管理的计算能力受到限制,频谱预测、频谱决策的结果常常滞后,时效性较差。
综上所述,为推动频谱管理从静态、低效的以人工为主模式向动态、精准的智能模式转变,探索一种新的频谱管理模式是目前亟待解决的难题。为此,本文将知识图谱理论与技术应用到频谱管理中,主要贡献概括如下。
1) 提出“频谱知识图谱”的概念、体系和表示方法。
2) 面向未来频谱管理场景,构建了基于频谱知识图谱的智能频谱管理框架。
wellbeing第5期孙佳琛等:频谱知识图谱:面向未来频谱管理的智能引擎·3·
locked
3) 探讨了基于频谱知识图谱的智能用频推荐案例,展望了基于频谱知识图谱的智能频谱管理交互应用。
2 知识图谱与频谱管理
2.1知识图谱概述
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法[11]。它利用图模型中的节点和节点间的边来表示复杂的人类知识,其中节点代表实体,可以是具体的事物或者抽象的概念;边代表实体间的关系或者实体的属性。这种图模型的表达通常描述为三元组的形式。知识图谱中的实体和关系具有明确的语义,可以由计算机进行形式化解释、推理和判断,用自然语言描述的人类知识由此被映射为机器可以计算和理解的信息。
知识图谱在2012年由谷歌公司提出,用于优化搜索引擎服务[12]。但实际上,它并非一项突然出现的新技术,而是由历史上很多相关概念互相影响和继承发展而来[11],例如专家系统[13]、语义网络、本体、语义网等。表1列出了这些相关概念与知识图谱间的联系和区别。知识图谱常被称为语义网的知
识库,谷歌公司提出的知识图谱搜索引擎服务就是以语义网Freeba作为数据基础改造的,现代知识图谱通常沿用语义网中的资源描述框架(RDF, resource description framework)进行简单实用的知识表示,从这点来看,知识图谱与语义网是十分相似的。但语义网中以符号逻辑为基础的知识表示方法只善于刻画显式、离散的知识,难以描述隐性知识、过程知识[13]。知识图谱则可将每一个实体和关系都映射到低维向量空间中获得它们的向量表示,通过数值计算实现隐含关系的推理。这种自动化的知识图谱嵌入技术[17]也使知识图谱的规模得到空前的扩展。传统的专家系统常依赖人工定义语义关系、获取知识,知识库的规模十分有限,而现代知识图谱与其最显著的差别就是知识图谱的规模巨大及其构建过程自动化。同时,逐渐成熟的自然语言处理技术更是与知识图谱互为支撑、互相促进,自然语言处理的众多算法已在实体抽取、关系抽取、知识融合等知识图谱构建环节中发挥关键作用。
根据知识图谱中包含的知识类型进行分类,可以将知识图谱分为通用知识图谱和领域知识图谱。关于通用知识图谱,国内外已有较成熟的项目。国外的代表性项目包括早期影响范围较广的由Cycorp公司开发的Cyc[18]、普林斯顿大学开发的WordNet[19]、麻省理工学院创建的ConceptNet[20]、MetaWeb公司构建的Freeba、维基构建的WikiData等。国内的代表性项目如下。复旦大学知识工场实验室研发并维护的CN-DBpedia[21],是国内较早推出的也是目前规模较大的开放百科中文知识图谱。清华大学研发的XLORE通过从异构的跨语言在线百科中抽取结构化信息,形成中英文知识规模较平衡的多语言知识图谱,为构建任意双语言知识平衡的大规模知识图谱提供了新的方式。浙江大学、东南大学、
同济大学等多个研究团队共同研发的OpenKG是一个面向中文域开放知识图谱的社区项目,旨在促进中文领域知识图谱数据的开放互联,同时还收集整理了重要的知识图谱开源工
表1相关概念与知识图谱的联系和区别
概念含义与知识图谱的联系与知识图谱的区别
专家系统[14]一个具有大量的专门知识与经验的程序
麦当娜经典歌曲系统,由知识库和推理机两部分组成
对领域知识进行知识表
示并形成知识库/集合
专家系统的知识库依靠专家手动获取知识,知识图谱
则支持自动化构建
语义网络一个带标识的有向图。图中节点表示各种
事物、概念、情况、状态等,节点与节点
间连接线表示各种语义联系、动作[15]
图结构化的知识表示
方法
语义网络缺乏形式化的语法规范和形式化的语义标
准,概念与实体之间没有明显的区分,节点与边难以
进行更加丰富的定义
本体定义了某一领域内的专业词汇以及它们
之间的关系,是对概念化的精确描述
提供了一种人、机器等
不同主体间交流的语义
基础
本体侧重于描述概念类别和通用关系,较体系化;知
识图谱包含更多具体实例,反映的是本体基础知识的
具体表现结果
语义网将Web中数据以RDF与互联网本体语言
(OWL, ontology Web language)来表示,
建立网络数据之间的语义关系,使处理数
据的机器能够像人一样理解网络上的信
息,从而提供更好的网络服务[16]
常采用基础数据模型
RDF
语义网的表示对象主要是万维网上的文档,如超文本
标记语言(HTML, hypertext markup language)文档、
缎纹织物可扩展标记语言(XML, extensive markup language)文
档;知识图谱中实体的含义和类型更丰富
·4·通信学报第42卷
comfortable是什么意思
具。就领域知识图谱而言,电商、金融、医疗、企业管理等众多领域的知识图谱应用逐渐落地生根。例如,医学知识图谱用于表达、组织、管理及利用海量异构动态的医疗大数据,在临床决策支持系统、医疗智能语义搜索引擎、医疗问答系统等系统中得到了广泛应用[22]。金融知识图谱可对大量金融数据进行标准化和可视化,用于监管企业的发展趋势,调查隐藏的财务关系等[23]。
此外,在知识图谱管理方面,以Jena和RDF4J 等为代表的关系数据库系统和以Neo4j为代表的图数据管理系统常用来支持大规模知识图谱的存储、检索和分析。
知识图谱在诸多领域的广泛应用得益于其对以二元一阶谓词逻辑为主的简单知识的成功表示。而对于某些三元关系甚至多元高阶谓词逻辑的复杂表达,现有知识图谱尚无法胜任,且面临链接困难、关系冗余、组合爆炸等难题[24]。Ding等[25]针对网络文档的多跳问答推理难题,受双过程理论启发,在知识图谱的基础上提出了认知图谱。认知图谱被解释为“基于原始文本数据,针对特定问题情境,使用强
大的机器学习模型动态构建的,节点带有上下文语义信息的知识图谱”,可以减少图谱构建时的信息损失,将信息处理压力转移给检索和自然语言理解算法,同时保留图结构以进行可解释关系推理[24]。
人工智能的核心难题之一是研究怎样用计算机易于处理的方式表示、学习和处理各种各样的知识。不断发展和完善的知识图谱将使机器能模仿人的思维过程,拥有思考、理解、判断、分析的能力,成为实现认知智能不可或缺的重要技术之一[11]。2.2知识图谱引入频谱管理的意义制造商英语
据调研,知识图谱目前在无线通信、信号检测、网络管理方面的研究刚刚开始。张育瑜等[26]针对无线电监测数据未规范化的问题,提出了基于知识图谱的海量无线电监测数据的分析思路,利用盲信号识别等方式,构建了结构化无线电监测数据知识库。胡航宇等[27]提出一种基于流知识图谱的网络流行为分析模型——网络流连接图,网络流连接图能够充分利用网络流行为测量数据中的可用信息,刻画网络应用流连接关系的固有特征,检测与识别网络异常行为,适合多种图挖掘算法的应用。Aumayr 等[28]针对复杂动态电信网络系统管理的自动化需求,从网络当前状态中收集上下文信息,并将其与网络提供商和运营商领域的现有电信知识文档中的有用信息相关联,构建了一个面向网络自动管理的知识图谱。该知识图谱可针对各种突发的网络事件,自动推荐工作流,辅助网络故障诊断和排除,提高网络管理的效率,改善客户体验。上述研究是将知识图谱应用到通信领域的有益尝试,但尚没有系统地涉及无线通信中用频设备/系统/业务之间,以及与其使用的频谱资源之间的关系,尤其是在频谱管理中,知识图谱的应用目前仍未见报道。
结合知识图谱的特点和频谱管理面临的严峻挑战,本文考虑在频谱管理中引入知识图谱,主要如下。
1) 知识图谱能够表征频谱领域的复杂语义。知识图谱将频谱管理中蕴含的复杂关系和事实映射于不同的实体和实体间的关系上,且这些实体和关系都具有明确的含义,如用频设备、频谱资源表示通信、干扰或使用资源等关系,这种映射方式可以表征频谱领域的语义,使机器理解频谱管理中的各种信息。同时,知识图谱本质上是一种图模型的数据库,实体和关系对应图中的节点和边,还能通过图数据计算进一步发掘隐含的深层关系和事实。
2) 知识图谱能够支撑频谱管理的自动化。通过为频谱管理提供多域关联的频谱知识参考,知识图谱可以将频谱管理中各个零散的工作环节串联起来,自动进行多步查询推理,从而减少频谱管理对人工操作的依赖。
3) 知识图谱能够增强频谱管理的知识引导。知识图谱能将人类积累的频管经验和实践技巧转化为机器能够理解和处理的频谱知识,并融入频谱管理中发挥频谱知识的引导作用,使频谱管理从单纯的数据驱动转变为数据与经验知识混合驱动。
4) 知识图谱能够提升频谱管理的规模化。频谱知识图谱的向量表示将用频设备、频谱资源等实体及其之间的关系映射到连续向量空间,向量表示的具体过程采用深度学习模型进行自动训练,使知识图谱的规模得到极大拓展。
5) 知识图谱能够提升频谱管理的可解释性。知识图谱相当于大脑中的知识库,使智能算法的输入、输出行为以及它们之间的内在因果关系或关联关系可以被理解,有利于提升频谱管理的透明度、可信任度、推广泛化能力。
综上所述,在频谱管理中引入知识图谱有助于高效融合频谱监测数据、用频设备信息、频谱管理
第5期孙佳琛等:频谱知识图谱:面向未来频谱管理的智能引擎·5·
日志等多源数据,挖掘频谱管理中各实体之间在时间/频率/空间等多元维度上的隐藏关系,实现频谱数据与模型/专家经验混合驱动的频谱智能管理,提升复杂环境下频谱管理的智能化水平,更加接近人类的认知思维,便于实现人工智能与人类智能的协同增效。知识图谱将成为频谱智能管理领域强有力的新概念、新工具。
3频谱知识图谱的构建
3.1频谱知识图谱的概念
频谱知识图谱是表征频谱管理领域复杂知识的新概念,本文给出频谱知识图谱的初步定义:频谱知识图谱是一种领域知识图谱,它通过整合多源异构的频谱数据,表示频谱资源、用频设备等频谱空间内概念、实体间的复杂关系,实现频谱知识的表征、提取、存储、推理,服务于未来频谱管理的自动化
、智能化、精准化需求。下面将结合知识图谱的生命周期和构建过程具体阐释频谱知识图谱的定义。如图1(a)所示,频谱知识图谱的生命周期主要包括知识体系构建、知识获取、知识融合、知识存储与查询、知识推理、知识应用6个环节[29]。其中,知识体系构建是频谱知识图谱的实现基础,知识建模和本体构建明确了频谱知识图谱将包含的各种概念、实体以及具有的属性和它们之间的关系;知识获取主要是指从数据中抽取频谱知识;知识融合是对不同来源、不同结构的知识进行融合的过程;知识存储与查询关注的是知识图谱的数据模型、存储方式及查询语言;知识推理是针对知识图谱的缺失链接进行补全,挖掘实体隐含的内在关系,同时将为频管搜索、频管问答、用频推荐等知识图谱下游应用提供支撑。
根据图谱生命周期,频谱知识图谱构建过程如图1(b)所示。首先,对来源广泛、类型多样的非结构化频谱数据进行知识获取,数据来源包括专业频谱管理人员的实践经验、文本化的频谱管理政策和用频设备信息、格式化的频谱管理日志和频谱监测数据报表,甚至频谱态势图像等。在此过程中,频谱知识体系将为知识获取提供依据和参考,即由模式层创建实例层,其中模式层存储的是精炼的概念或实体以及它们之间的关系类型,而实例层对应的则是从实际数据中抽取的具体实例对象及其关系。然后,抽取得到的频谱知识将与结构化频谱数据进行知识融合,形成统一的频谱知识表示。对频谱知识进行存储,即形成可用的频谱知识图谱。通过知识推理可以对已构建的频谱知识图谱中缺失的知识链接进行补全完善,最后服务于具体应用。
图1 频谱知识图谱的概念