机器学习——极限学习(ELM)matlab代码分析

更新时间:2023-06-23 22:36:36 阅读: 评论:0

P=train_data(:,2:size(train_data,2))';  %  获取属性列加了转置
clear train_data;                                  %  Relea raw training data array
%%%%%%%%%%% Load testing datat
test_data=load(TestingData_File);
TV.T=test_data(:,1)';
TV.P=test_data(:,2:size(test_data,2))';
clear test_data;                                    %  Relea raw testing data array
NumberofTrainingData=size(P,2);    %  训练集⼤⼩
NumberofTestingData=size(TV.P,2);  %  测试集⼤⼩
NumberofInputNeurons=size(P,1);  %  输⼊神经元数量,即属性个数
% 如果不是逻辑回归,即分类问题
if Elm_Type~=REGRESSION
%%%%%%%%%%%% Preprocessing the data of classification
sorted_target=sort(cat(2,T,TV.T),2);  %训练集和测试的标签连起来并按从⼩到⼤顺序排列,组成⼀个⾏向量
label=zeros(1,1);                              %  Find and save in 'label' class label from training and testing data ts
label(1,1)=sorted_target(1,1);
j=1;
for i = 2:(NumberofTrainingData+NumberofTestingData)  % 利⽤循环把第⼀类标签统⼀到(1,1)第⼆类统⼀到(1,2), sorted_target已经从⼩到⼤排列
关于朋友的英语作文
if sorted_target(1,i) ~= label(1,j)
j=j+1;
label(1,j) = sorted_target(1,i);
end
end
number_class=j;  % 类的数量
strengthenedbrunNumberofOutputNeurons=number_class;  % 类的数量赋值给输出神经元的数量
%%%%%%%%%% Processing the targets of training
temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);  % 输出神经元组成矩阵的⼀列,⽤于暂时存储训练集的输出
for i = 1:NumberofTrainingData  % 将每个训练样本的标签弄到temp_T⾥。如总共有5个类,第⼀个训练样本属于第⼆个类,则temp_T第⼀列为[0;1;0;0;0]
for j = 1:number_class
if label(1,j) == T(1,i)
break;
end
end
temp_T(j,i)=1;
end
show fielT=temp_T*2-1;  % temp_T矩阵的每个元素的数变化⼀下,如对于⼆分类,值为-1 或者1;T的⼤⼩变为标签数量*训练样本数量
%%%%%%%%%% Processing the targets of testing  ⽅法跟处理训练集标签⼀样
temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);
英语翻译成中文for i = 1:NumberofTestingData
for j = 1:number_class
if label(1,j) == TV.T(1,i)
break;
end
end
temp_TV_T(j,i)=1;
end
TV.T=temp_TV_T*2-1;
end                                                %  end if of Elm_Type
%%%%%%%%%%% Calculate weights & bias
start_time_train=cputime;  % 计算开始训练时刻,训练开始
%%%%%%%%%%% Random generate input weights InputWeight (w_i) and bias BiasofHiddenNeurons (b_i) of hidden neurons
%%%%%%%%%%% 随机产⽣隐层神经元的输⼊权 InputWeight (w_i)、偏置BiasofHiddenNeurons (b_i)
InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;      % 输⼊权重是⼀个隐层神经元数量*输⼊神经元数量的矩阵,元素InputWeight(l,n)就表⽰输⼊n与                                                                                                                                                % NumberofHiddenNeurons由主函数指定,NumberofInputNeurons输⼊神经元的数量(即属性BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);  % NumberofHiddenNeurons由主函数指定,BiasofHiddenNeurons是⼀个列向量,⾏数等于隐层神经元数量tempH=InputWeight*P;  % tempH是⼀个隐层数*训练样本数的矩阵
clear P;                                            %  Relea input of training data
ind=ones(1,NumberofTrainingData);  % 元素为1的⾏向量
韩语你好怎么说BiasMatrix=BiasofHiddenNeurons(:,ind);              %  Extend the bias matrix BiasofHiddenNeurons to match the demention of H.
%  扩展偏置矩阵BiasofHiddenNeurons以匹配H的维数,有⾏数等于隐层列数等于1扩展成⾏数等于隐层列数等于训练样本数(与te tempH=tempH+BiasMatrix;  % tempH作⽤于⼀个函数即为隐层输出
kasing
%%%%%%%%%%% Calculate hidden neuron output matrix H (计算输出矩阵H)
switch lower(ActivationFunction)  % ActivationFunction由⽤户在主函数指定
ca {'sig','sigmoid'}
%%%%%%%% Sigmoid
H = 1 ./ (1 + exp(-tempH));  % H即为隐层输出,是⼀个隐层数*训练样本数的矩阵
H = 1 ./ (1 + exp(-tempH));  % H即为隐层输出,是⼀个隐层数*训练样本数的矩阵
ca {'sin','sine'}
%%%%%%%% Sine
H = sin(tempH);
ca {'hardlim'}
%%%%%%%% Hard Limit
H = double(hardlim(tempH));
ca {'tribas'}
%%%%%%%% Triangular basis function
H = tribas(tempH);
ca {'radbas'}
%%%%%%%% Radial basis function
H = radbas(tempH);
%%%%%%%% More activation functions can be added here
end
clear tempH;                                        %  Relea the temparary array for calculation of hidden neuron output matrix H
%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)
%%%%%%%%%%% 计算输出权重β(⼤⼩为:隐层数*标签数量),β(l,m)为隐层l与输出层m的权重
OutputWeight=pinv(H') * T';                        % implementation without regularization factor //refer to 2006 Neurocomputing paper
% H是⼀个隐层数*训练样本数的矩阵;pinv(H')是求H的⼴义逆矩阵,⼤⼩也为隐层数*训练样本数
% 标签矩阵T的⼤⼩在标签处理步骤中的85⾏变为:标签数量*训练样本数量,故OutputWeight(即笔记中的beta)⼤⼩为:隐层数*标签数%OutputWeight=inv(eye(size(H,1))/C+H * H') * H * T';  % faster method 1 //refer to 2012 IEEE TSMC-B paper
%implementation; one can t regularizaiton factor C properly in classification applications
%OutputWeight=(eye(size(H,1))/C+H * H') \ H * T';      % faster method 2 //refer to 2012 IEEE TSMC-B paper
%implementation; one can t regularizaiton factor C properly in classification applications
%If you u faster methods or kernel method, PLEASE CITE in your paper properly:
%Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang, "Extreme Learning Machine for Regression and Multi-Class Classification," submitted to IEEE Transacti end_time_train=cputime;  % 训练完成,计算结束时刻
TrainingTime=end_time_train-start_time_train;        %  Calculate CPU time (conds) spent for training ELM  计算训练耗时
%%%%%%%%%%% Calculate the training accuracy
Y=(H' * OutputWeight)';                                %  Y: the actual output of the training data. H是⼀个隐层数*训练样本数的矩阵;
%  OutputWeight隐层数*标签数量,故Y的⼤⼩为:标签数量*训练样本数量,与真实标签矩阵⼤⼩⼀样
if Elm_Type == REGRESSION
TrainingAccuracy=sqrt(m(T - Y));              %  Calculate training accuracy (RMSE) for regression ca
end
clear H;
%%%%%%%%%%% Calculate the output of testing input
start_time_test=cputime;  %  计算开始测试时刻
tempH_test=InputWeight*TV.P;
clear TV.P;            %  Relea input of testing data
ind=ones(1,NumberofTestingData);
BiasMatrix=BiasofHiddenNeurons(:,ind);              %  Extend the bias matrix BiasofHiddenNeurons to match the demention of H
tempH_test=tempH_test + BiasMatrix;
switch lower(ActivationFunction)
ca {'sig','sigmoid'}
%%%%%%%% Sigmoid
H_test = 1 ./ (1 + exp(-tempH_test));
fcfs
ca {'sin','sine'}
%%%%%%%% Sine
H_test = sin(tempH_test);
ca {'hardlim'}
%%%%%%%% Hard Limit
H_test = hardlim(tempH_test);
ca {'tribas'}
%%%%%%%% Triangular basis function
H_test = tribas(tempH_test);
ca {'radbas'}日语在线发音
ikuo
%%%%%%%% Radial basis function
H_test = radbas(tempH_test);
%%%%%%%% More activation functions can be added here
end
TY=(H_test' * OutputWeight)';                      %  TY: the actual output of the testing data.  OutputWeight是⽤训练集训练出来的
end_time_test=cputime;  % 结束测试时刻
TestingTime=end_time_test-start_time_test;          %  Calculate CPU time (conds) spent by ELM predicting the whole testing data
if Elm_Type == REGRESSION
TestingAccuracy=sqrt(m(TV.T - TY));            %  Calculate testing accuracy (RMSE) for regression ca
end

本文发布于:2023-06-23 22:36:36,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/155347.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:数量   训练样本   标签   训练   矩阵   输出
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图