高压低温氢气流动特性研究

更新时间:2023-06-22 17:32:19 阅读: 评论:0

摘要
当代社会能耗需求大、追求环保,而传统的不可再生能源如石油、天然气等化石燃料日渐枯竭,所以寻找一种清洁、可控、安全的新能源成为人们与日俱增的强烈需求。氢能以其能量密度大、清洁环保等特点在工业上,尤其是在交通运输领域的应用成为目前新能源产业的主要关注点之一,氢燃料电池汽车也随之应运而生。随着氢燃料电池汽车行业发展的日益成熟,对氢能基础设施的建设与加氢站加氢过程中的参数匹配和充氢速率的控制策略提出了更高的要求。
本文以某70MPa液态储氢加氢站建设项目为依托,针对加氢站中高压低温氢气流动过程中的真实气体效应,以用户自定义气体模型UDRGM的手段对适用于描述加氢站内氢气流动的真实气体拟合状态方程进行了二次开发,创建了高压低温氢气在CFD 计算中可供直接调用的真实气体模型,并对此模型与现有的依据半经验方程(R-K方程、MBWR方程)创建的真实气体模型做了比较探讨,最终确定使用拟合方程描述的真实气体模型作为CFD计算的基础可提高仿真精度、减少计算量。对氢气流经加氢机内减压阀的节流膨胀过程进行了仿真分析,得出了在加氢站常用的工艺参数范围内,焦耳-汤姆逊效应的影响因素以及减压阀前后的温度-压力变化规律,提出了在加氢站加氢过程中减压阀后产生12~37℃温升的仿真结论,为加氢机节流过程的参数设置提供了一定的依据。使用以孔板组为节流元件的高压氢气瓶充放气系统进行90MPa压力等级的气瓶充放气试验,通过仿真结论与试验数据的对比分析,对建立的氢气节流膨胀过程计算模型的精度进行了验证。依据最新加氢协议标准SAE-J2601-201612R对加氢站内的加氢机模
块使用系统级仿真软件AMESim进行了详细的系统仿真,提出了加氢机对车载储氢气瓶温升现象与氢气充装速率的控制策略,考虑到加氢机系统内的节流效应,给出了气源温度的取值依据,并提出了一种可变平均压力变化速率的加氢模式,可使加氢时间缩短,并可为气源温度预冷装置节省冷量,实现了加氢站系统参数匹配设置的优化。
关键词:加氢站;真实氢气;UDRGM;焦耳-汤姆逊效应;AMESim
I
Study on Flow Characteristics of High Pressure and Low
Temperature Hydrogen
Abstractshanghai american school
In the contemporary society, the demand for energy consumption is great and the pursuit of environmental protection is being pursued, while the traditional non-renewable energy sources such as petroleum, natural gas and other fossil fuels are depleted day by day, so the arch for a clean, controllable and safe new energy has become a growing demand. Hydrogen energy has become one of the main concerns in the new energy industry becau of its high energy density, clean and e
nvironmental protection, especially in the field of transportation. Hydrogen fuel cell vehicles have also emerged as the times require. With the development of the hydrogen fuel cell automobile industry, higher requirements are put forward for the construction of hydrogen energy infrastructure, the matching of parameters and the control strategy of hydrogen charging rate in the hydrogenation process of hydrogenation station.
Bad on the 70 MPa liquid hydrogen storage and hydrogenation project built by Beijing institute of Aerospace Test Technology, this paper redevelops the fitting state equation of real gas suitable for describing hydrogen flow in hydrogenation station by means of ur-defined gas model UDRGM, aiming at the real gas effect in the process of medium-high pressure and low-temperature hydrogen flow in hydrogenation station, and establishes the CFD calculation of high-pressure and low-temperature hydrogen gas. The real gas model, which can be directly invoked, is compared with the existing real gas model bad on mi-empirical equation (R-K equation, MBWR equation). Finally, it is determined that the real gas model described by fitting equation can be ud as the basis of CFD calculation to improve the simulation accuracy and reduce the amount of calculation. The throttle expansion process of hydrogen flow through the pressure relief valve in hydrogenation plant is simulated and analyzed. The influencing factors of Joule-Thomson effect and the temperature-press
ure change rule before and after the pressure relief valve are obtained within the range of commonly ud process parameters in hydrogenation station. The simulation conclusion that 12-37℃is produced after the pressure relief valve in hydrogenation station is put forward to throttle the hydrogenation machine. The parameter tting of the process provides a certain basis. The high pressure hydrogen cylinder charging and discharging system with orifice plate group as throttling element was ud to carry out 90 MPa pressure level cylinder charging and discharging experiments. The accuracy of the calculation model of hydrogen throttling expansion process was verified by comparing the simulation results with the experimental data. According to the latest
II
hydrogenation standard SAE-J2601-201612R, the system-level simulation software AMESim is ud to simulate the hydrogenation module in the hydrogenation station in detail. The control strategy of the temperature ri of the hydrogen storage cylinder and the filling rate of hydrogen gas is put forward. Considering the throttling effect in the hydrogenation system, the basis of the temperature of the gas source is given. A hydrogenation mode with variable average pressure change rate is propod, which can shorten the hydrogenation time and save the cooling capacity for the gas source temperature pre-cooling device, and optimize the parameter matching ttings of the hydroge
nation station system.
Key Words:Hydrogenation station;Real hydrogen;UDRGM;Joule-Thomson effect;AMESim
I II
目    录
摘要............................................................................................................................. I Abstract ............................................................................................................................. II 引言....................................................................................................................... - 1 -1 绪论........................................................................................................................... - 2 -
1.1 课题背景........................................................................................................ - 2 -
1.2 加氢站发展现状............................................................................................ - 4 -
1.2.1 加氢站建设情况................................................................................. - 4 -
1.2.2 加氢站基本构成与加氢机技术难度................................................. - 6 -
1.2.3 加氢站相关专利和标准..................................................................... - 7 -
1.3 焦耳-汤姆逊效应......................................................................................... - 10 -
1.4 真实气体状态方程的研究现状.................................................................. - 12 -
1.5 研究进展小结.............................................................................................. - 14 -
showercream1.6 本文研究内容及技术路线.......................................................................... - 16 -
1.6.1 研究内容........................................................................................... - 16 -
1.6.2 技术路线........................................................................................... - 17 -
2 高压低温氢气节流过程局部流场仿真................................................................. - 18 -
2.1 数学模型...................................................................................................... - 18 -
2.1.1 基本假设........................................................................................... - 18 -
2.1.2 控制方程........................................................................................... - 19 -
2.1.3 湍流模型........................................................................................... - 19 -
2.2 几何模型...................................................................................................... - 21 -
2.3 网格划分...................................................................................................... - 22 -电影对白
2.4 数值算法...................................................................................................... - 26 -
2.5 网格无关性验证.......................................................................................... - 27 -
2.6 边界条件...................................................................................................... - 29 -
2.6.1 入口边界条件................................................................................... - 30 -
黑眼豆豆经典歌曲2.6.2 出口边界条件................................................................................... - 30 -
2.6.3 壁面边界条件................................................................................... - 31 -
2.6.4 阀门开度........................................................................................... - 31 -
2.7 真实气体模型比较...................................................................................... - 32 -
2.7.1 拟合状态方程................................................................................... - 32 -
2.7.2 气体模型比较................................................................................... - 33 -
longbeach2.8 温升的影响因素分析.................................................................................. - 38 -enjoy
IV
2.8.1 出口压力的影响............................................................................... - 38 -
2.8.2 入口温度的影响............................................................................... - 39 -
2.8.3 入口压力的影响............................................................................... - 40 -
2.8.4 阀门开度的影响............................................................................... - 41 -
2.9 本章小结...................................................................................................... - 42 -
3 试验验证................................................................................................................. - 4
4 -
neutrality3.1 试验系统...................................................................................................... - 44 -
3.2 试验条件...................................................................................................... - 44 -
coalition3.3 试验1 节流件开度影响的验证................................................................. - 45 -
himcm3.4 试验2 入口压力影响的验证..................................................................... - 47 -
3.5 试验数据与仿真结果对比.......................................................................... - 47 -
3.6 本章小结...................................................................................................... - 49 -
4 加氢机加氢过程系统仿真..................................................................................... - 50 -
4.1 加氢协议...................................................................................................... - 50 -
4.1.1 加氢安全边界条件........................................................................... - 50 -
4.1.2 平均压力变化速率........................................................................... - 52 -
4.2 加氢机系统原理.......................................................................................... - 54 -
4.3 仿真模型...................................................................................................... - 55 -
4.3.1 气体模型........................................................................................... - 55 -
4.3.2 阀门模型........................................................................................... - 55 -
4.3.3 管道模型........................................................................................... - 56 -
4.3.4 气源模型........................................................................................... - 56 -
4.3.5 气瓶模型........................................................................................... - 56 -
4.4 仿真计算...................................................................................................... - 61 -
4.4.1 焦耳-汤姆逊效应.............................................................................. - 61 -
4.4.2 最低气源温度................................................................................... - 62 -
4.4.3 最高气源温度................................................................................... - 65 -
4.4.4 控制APRR的方式 .......................................................................... - 66 -
4.4.5 最快速加氢模式下气源温度对气瓶温升的影响........................... - 66 -山行古诗的意思翻译
4.4.5 最快速加氢模式下环境温度对气瓶温升的影响........................... - 67 -
4.4.6 变APRR台阶式加氢模式 .............................................................. - 70 -
4.4.7 满足快速加氢商业要求的加氢模式............................................... - 72 -
4.5 本章小结...................................................................................................... - 74 -
5 总结与展望............................................................................................................. - 7
6 -
V

本文发布于:2023-06-22 17:32:19,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/153915.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:加氢   氢气   模型   过程   节流   影响   压力   温度
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图