摘要
摘要
量子通信技术主要是基于量子力学的基本原理,单光子不可分割的特性和量子不可克隆原理来保证信息不可被窃听,因此量子通信是拥有极强的保密性,是当前通信领域研究的热点。然而,有关于海洋气候因素对于量子通信性能的影响方面的研究,迄今研究较少。为此本文通过对几种常见的海洋气候因素进行了分析,研究了复杂天气下海洋气候因素对光量子传输的影响,重点讨论了在特定环境中量子通信所受到的外部环境影响,分析了环境特性对通信信道造成的衰减,并研究了其定量关系,为今后量子通信发展的研究提供了理论依据,为下一步研究如何实现星海量子通信这一问题奠定了一定的基础。本文的创新点主要分为:
一、涌浪运动是非均匀水流中的一种非线性运动,首先对涌浪运动的传播建立了数学模型并分析了其频谱特性;然后针对退极化信道,提出了涌浪运动过程中波高、波长及运动周期与水下量子通信信道纠缠和信道容量的定量关系,并对量子密钥分发过程中误码率的影响进行了分析,结果表明随着涌浪运动波长和波高的增大,量子信道纠缠度和信道容量近似呈指数减小。
二、根据海雾对光量子信号的传输造成的极大影响,首先对海雾的分布建立了数学模型。针对退极化信道,给出了海雾现象中雾滴例子浓度与量子链路衰减的定量关系,并剖析了海雾能见度与链路保真度和
信道建立速率的定量关系,对纠缠粒子对的保真度对信道建立速率的影响进行了研究,结果显示随着海雾现象中雾滴粒子浓度和传输距离的增加,量子链路衰减呈指数形式增加,退极化信道保真度逐渐降低。
三、为了研究海洋潮汐对量子通信造成的影响,首先建立海潮的模型,其次分析了海洋潮汐的成因及其评估方法,尤其是针对幅值阻尼信道,分析了海潮的潮高对信道容量的影响,并对量子通信信道利用率进行了研究,结果表明随着海潮潮高的不断增长,发生的时间越长,量子信道的容量越小,信道利用率随之逐渐降低。
关键词:量子通信;涌浪运动;海雾;海洋潮汐
ABSTRACT
Quantum communication technology is mainly bad on the basic principles of quantum mechanics,the inparable characteristics of single photons and the quantum non-cloning principle to ensure that information cannot be eavesdropped.Therefore quantum communication has a strong confidentiality,it is a hot spot in the field of communication.However,the rearch on the effects of oceanic climate factors on the performance of quantum communications have been studied so far.In this paper, through analyzing veral common marine climate factors,the effects of ocean climate fac
tors on optical quantum transmission under complex weather are studied. The external environmental impacts of quantum communication in specific environments are discusd,and the environmental characteristics for channel attenuation are analyzed,the quantitative relationship is studied,which provides a theoretical basis for the future rearch of quantum communication development,and lays a foundation for further rearch on how to realize the problem of Xinghai quantum communication.The innovations of this paper are mainly divided into: Firstly,the surge movement is a kind of nonlinear motion in non-uniform water flow.The mathematical model of the surge movement is established and its spectral characteristics are analyzed.Then,for the depolarization channel,the wave height and wavelength during the sloshing motion are propod.The quantitative relationship between motion cycle and underwater quantum communication channel entanglement and channel capacity is analyzed,and the influence of bit error rate in quantum key distribution process is analyzed.The results show that quantum channel entanglement increas with the increa of surge wave wavelength and wave height.The degree and channel capacity are approximately exponentially decreasing.
Then,according to the great influence of a fog on the transmission of optical quantum signals,a mathematical model is established for the distribution of a fog. For the depolarization channel,the
carmas
quantitative relationship between the atomic droplet concentration and the quantum link attenuation in the a fog phenomenon is given,and the quantitative relationship between the a fog visibility and the link fidelity and channel establishment rate is analyzed.The effect of fidelity on the channel establishment rate is studied.The results show that as the droplet concentration and transmission distance increa in the a fog phenomenon,the quantum link attenuation increas exponentially,and the depolarization channel
西安邮电大学硕士学位论文
fidelity gradually is decreasing.
Finally,in order to rearch the impact of ocean tide on underwater quantum communication,the model of ocean tide is established,and then the cau of ocean tide and its evaluation method are analyzed.Especially for amplitude damping channel,the tide height of channel is analyzed.The influence of the quantum communication channel utilization rate is studied.The results show that as the tide tide increas,the longer the occurrence time,the smaller the quantum channel capacity,and the channel utilization rate is decreasing.
Key words:Quantum communication;surge movement;Sea fog;Ocean tide
目录
目录
摘要.........................................................................................................................III 第1章绪论. (1)
1.1课题的背景与意义 (1)
1.2国内外量子通信的研究状况 (2)
1.3论文完成的工作 (4)
第2章量子通信的基本理论 (1)
2.1量子信息的基础概念 (1)
2.1.1量子比特 (1)
2.1.2量子纠缠 (2)
2.1.3量子叠加态原理 (3)
2.1.4测不准原理 (4)
2.1.5量子不可克隆原理 (5)
2.1.6海森堡不确定性原理 (5)
2.2量子通信的关键技术 (6)
2.2.1量子隐形传态 (6)
2.2.2量子密钥分发 (7)
月份 英语2.2.3量子密集编码协议 (8)
2.2.4诱骗态量子通信协议 (9)
2.3量子通信信道 (10)
orc2.3.1比特翻转信道 (10)
2.3.2退极化信道 (10)
2.3.3振幅阻尼信道 (11)
2.4星海量子通信网络 (12)
2.5本章小结 (12)
第3章非均匀水流中涌浪运动对水下量子通信性能的影响 (15)
3.1引言 (15)
3.2涌浪运动传播的数学模型及其频谱特性 (15)
raid是什么意思
3.3涌浪运动对水下量子信道的影响 (20)
3.3.1涌浪运动对水下量子通信信道纠缠度的影响 (20)
3.3.2涌浪运动对系统中量子信道容量的影响 (23)
3.4涌浪运动对量子密钥分发过程中误码率的影响 (27)
西安邮电大学硕士学位论文
守护神英文3.5结论 (28)
3.6本章小结 (28)
第4章海雾对量子通信链路性能的影响及参数仿真 (31)
4.1引言 (31)
4.2海雾的分布模型 (31)
4.3海雾现象对量子链路影响 (33)
4.3.1海雾现象对链路衰减的影响 (33)
for free4.3.2海雾现象对量子链路信道保真度的影响 (36)
4.4海雾现象对信道建立速率的影响 (38)
4.5结论 (40)生活大爆炸第一季多少集
4.6本章小结 (40)
第5章海洋潮汐对量子通信性能的影响 (41)
5.1引言 (41)
5.2海洋潮汐模型的建立 (41)
5.3海洋潮汐的成因及评估方法 (42)
contradiction5.4海洋潮汐对量子通信信道的影响 (45)
5.5海洋潮汐对量子通信信道利用率的影响 (47)
magic eye5.6总结 (49)
5.7本章小结 (49)
第6章结论与展望 (51)
6.1本文总结 (51)
6.2展望 (52)
参考文献 (53)
c开头的单词
攻读学位期间取得的研究成果 (57)
致谢 (59)