海洋障碍层对台风的影响
台风是目前世界上破坏能力最大的自然灾害之一,给沿海地区带来了巨大的人员伤亡和财产损失(Emanuel KA,2003; Pielke et al., 2003)。有证据显示,台风变化与全球气候异常之间存在着潜在的关系(Sriver et al., 2007)。随着卫星技术的成熟,遥感观测的进步,台风路径的预报也有了长足的进步(DeMaria et al., 2005)。但是,到目前为止,对台风强度的预报仍然存在很多不确定性(Emanuel et al., 2004)。前人的研究指出台风引起的海面冷却对台风强度的变化有重要影响(Bender and Ginis, 2000; Cione and Uhlhorn, 2003; Lloyd ID and Vecchi, 2011)。由于台风强度受海气热力差异的影响很大,所以任何由于台风引起的风致混合和上涌导致的海表温度变化都可能对台风强度的变化起作用(Emanuel KA, 1999; Price JF, 1981; Shay et al., 2000; Shen and Ginis, 2003; Lin et al., 2005)。
海洋混合层通常定义为具有均一密度和温度的水层,是海气相互作用的分界面。当海洋上层有大量淡水注入时,由于盐度变化的影响,使均一的密度层变得比均一的温度层浅,将温度跃层和密度跃层之间的水层称为障碍层(barrier layer)。障碍层对热量的垂直交换起“热障”的作用 , 使混合层和温跃层无法进行有效的热量交换 (Godfrey. S. and E. R. Lindstrom, 19
89)。 从海洋对气候影响的角度来看, 障碍层的出现减弱了混合层内夹卷的冷却效应, 从而对海洋热收支、海面温度、以及海洋与大气的热交换都有影响(Ando, K., and M. J. Mcphaden, 1997;Swenson, M. S., and D. V. Hann, 1999)。从障碍层影响海洋和大气的耦合作用角度 , Anderson等(Anderson et al., 1996)认为障碍层可能影响ENSO循环的过程。
障碍层通常是热带海洋暖海域的一个重要特征,而台风也经常出现在这些区域,因此障碍层可能存在于台风的路径中, 对台风的强度有影响。前人有研究指出,海洋障碍层对台风引起的海面温度冷却有重要影响(Sengupta et al., 2008),进而对台风的强度有重要影响(Ffield et al., 2007; McPhaden, 2009; Wang et al., 2011)。Karthik Balaguru等(Karthik Balaguru et al., 2012)的研究指出,热带气旋的强度受到盐度变化引起的障碍层的显著影响。当热带气旋经过存在障碍层的海区时,障碍层具有的稳定层结减小气旋引起的垂直混合和海表温度冷却,从而导致更多的热量从海洋输送到大气中,进而引起热带气旋的增强。
1. Emanuel KA , 2003: Tropical cyclones. Annu Rev Earth Planet Sci 31:75–104.
2. Pielke RA, Jr, Rubiera J, Landa C, Fernandez ML, Klein R, 2003: Hurricane vulnerability in Latin America and the Caribbean: Normalized damage and loss potentials. Nat Hazards Rev 4:101–114.
经典大片3. Sriver RL, Huber M, 2007: Obrvational evidence for an ocean heat pump induced by tropical cyclones. Nature 447:577–580.
英文转换器4. DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea Forecasting 20:531–543.
5. Emanuel KA, DesAutels C, Holloway C, Korty RL, 2004: Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858.
6. Bender MA, Ginis I, 2000: Real-ca simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon Wea Rev 128:917–946.
航行英文>飞跃英语7. Cione JJ, Uhlhorn WE, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon Wea Rev 131:1783–1796.
联系的英文8. Lloyd ID, Vecchi GA, 2011: Obrvational evidence for oceanic controls on hurricane intensity. J Clim 24:1138–1153.
9. Emanuel KA, 1999: Thermodynamic control of hurricane intensity. Nature 401:665–669.
10. Price JF, 1981: Upper ocean respon to a hurricane. J Phys Oceanogr 11:153–175.
11. Shay LK, Goni GJ, Black PG, 2000: Effects of a warm oceanic feature on hurricane opal. Mon Wea Rev 128:1366–1383.
大学生素质教育12. Shen W, Ginis I, 2003: Effects of surface heat flux-induced a surface temperature changes on tropical cyclone intensity. Geophys Res Lett 30:1933–1936.
13. Lin I-I, et al., 2005: The interaction of super typhoon maemi (2003) with a warm ocean eddy. Mon Wea Rev 133:2635–2649.
14. Godfrey. S. and E. R. Lindstrom, 1989: The heat budget of the equatorial western Pacific surface mixed layer , J. Geophys. Res. , 94 , 8007~80171.
15. Ando, K., and M. J. Mcphaden, 1997: Variability of surface layer hydrography in the tropical Pacific Ocean, J. Geophys. Res., 1997, 102 , 23063~230781南京培训班>圆桌教育
16. Swenson, M. S., and D. V. Hann, 1999: Tropical Pacific Ocean mixed layer heat budget : The Pacific cold tongue , J. Phys. Oceanogr.,29, 69~811.
17. Anderson , S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool : Obrvation and 1D model results , J1 Climate , 1996 , 9 , 3056~30851.
18. Sengupta D, Goddalehundi BR, Anitha DS, 2008: Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos Sci Letts 9:1–6.
turn off19. Wang X, Han G, Qi Y, Li W, 2011: Impact of barrier layer on typhoon-induced a surface cooling. Dyn Atmos Oceans 52:367–385.
20. Ffield A, 2007: Amazon and Orinoco River plumes and NBC Rings: Bystanders or participants in hurricane events? J Clim 20:316–333.
21. McPhaden MJ, et al., 2009: Ocean-atmosphere interactions during cyclone nargis. Eos Trans AGU 90:53–60.
22. Karthik Balaguru, Ping Chang, R. Saravanan et al., 2012: Ocean barrier layers’ effect on tropical cyclone intensification, PNAS, 109(36): 14343–14347.