评价数据离散程度的指标

更新时间:2023-06-10 17:36:05 阅读: 评论:0

评价数据离散程度的指标
评价数据离散程度的指标
标准差
回首2012
标准差(Standard Deviation),也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
revi的名词标准计算公式
假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ,公式如图1.
图1
标准差也被称为标准偏差,或者实验标准差,公式如图2。
图2
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准计算公式假设有一组数值(皆为实数),其平均值为:此组数值的标准差为:琐碎的意思
样本标准差
在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。
从一大组数值当中取出一样本数值组合,常定义其样本标准差:
样本方差s是对总体方差σ的无偏估计。s中分母为n- 1 是因为样本的自由度为n-1 ,这是由于存在约束条件。
这里示范如何计算一组数的标准差。例如一群儿童年龄的数值为{ 5, 6, 8, 9 } :
第一步,计算平均值
微博辟谣第二步,计算标准差
σ=
σ=
happen的用法σ=
σ=此为标准差
离散度
chaco标准差是反应一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起
标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。
虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
一组数据怎样去评价和量化它的离散度呢?人们使用了很多种方法:
1.极差
最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。
mr怎么读
平面设计培训课程2.离均差的平方和
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法——平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
祖国在我心中的演讲稿
误会英语3.方差(S2)
由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。
样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有
考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
4.标准差(SD)
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。

本文发布于:2023-06-10 17:36:05,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/140521.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:标准差   离散   数据   程度   样本   数值
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图