EMC是Electro Magnetic Compatibility的缩写

更新时间:2023-05-18 09:54:07 阅读: 评论:0

1、EMC是Electro Magnetic Compatibility的缩写,即电磁兼容。电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。EMC包括EMI(电磁干扰)及EMS(电磁耐受性)两部份,所谓EMI电磁干扰,乃为机器本身在执行应有功能的过程中所产生不利于其它系统的电磁噪声;而EMS乃指机器在执行应有功能的过程中不受周围电磁环境影响的能力。
one more day2、PFC就是“功率因数校正”的意思,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。功率因数校正是用来减小输入电流的失真,抑制谐波分量,以提高用电设备用电的有用功比率、降低功耗和消除对电网干扰的的技术手段。
PFC有两种,一种是无源PFC(也称被动式PFC),一种是有源PFC(也称主动式PFC)。无源PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,但无源PFC的功率因数不是很高,只能达到0.7~0.8;有源PFC由电感电容及电子元器件组成,体积小,可以达到很高的功率因数,但成本要高出无源PFC一些。
有源PFC电路中往往采用高集成度的IC,主动PFC电路由高频电感、开关管、电容以及控制IC等元件构成,可简单的归纳为升压型开关电源电路,这种电路的特点是构造复杂,但优点很多:功率因数高达0.99、低损耗和高可靠、输入电压可以从90V到270V(宽幅输入)等,由于输出DC电压纹波很小,因此采用主动式PFC的电源不需要采用很大容量的滤波电容。
3开关电源功率变压器的设计方法
设计变压器的基本公式
为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)
Bm=(Up×104)/KfNpSc
式中:Up——变压器一次绕组上所加电压(V);f——脉冲变压器工作频率(Hz);Np——变压器一次绕组匝数(匝);Sc——磁心有效截面积(cm2);K——系数,对正弦波为4.44,对矩形波为4.0。一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。
变压器输出功率可由下式计算(单位:W)
Po=1.16BmfjScSo×10-5
式中:j——导线电流密度(A/mm2);Sc——磁心的有效截面积(cm2);
So——磁心的窗口面积(cm2)
3对功率变压器的要求
(1)漏感要小
图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。
图9双极性功率变换器波形
gapdh
功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。
(2)避免瞬态饱和
一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言
j开头的女英文名如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。
(3)要考虑温度影响
开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。
(4)合理进行结构设计
从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。
4磁心材料的选择
软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。
软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是
Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为
R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。开关电源用铁氧体磁性材应满足以下要求:
(1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br
磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从理论上讲,Bs高,变压器的绕组匝数可以减小,铜损也随之减小。在实际应用中,开关电源高频变换器的电路形式很多,对于变压器而言,其工作形式可分为两大类:
1)双极性。电路为半桥、全桥、推挽等。变压器一次绕组里正负半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中的直流分量基本抵消。
2)单极性。电路为单端正激、单端反激等,变压器一次绕组在1个周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化,见图7,这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高△B,降低匝数,减小铜耗。
(2)在高频下具有较低的功率损耗
铁氧体的功率损耗,不仅影响电源输出效率,同时会导致磁心发热,波形畸变等不良后果。变压器的发热问题,在实际应用中极为普遍,它主要是由变压器的铜损和磁心损耗引起的。如果在设计变压器时,Bm选择过低,绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁心发热。反之,若磁心发热为主体,也会导致绕组发热。
选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁氧体时,必须解决磁性材料本身功率损耗负温度系数问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的R2KB等材料均能满足这一要求。
buzzword(3)适中的磁导率
the gilroy
相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。
(4)较高的居里温度
居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温度在200℃以上,但是变压器的实际工作温度不应高于80℃,这是因为在100℃以上时,其饱和磁通密度Bs已跌至常温时的70%。因此过高的工作温度会使磁心的饱和磁通密度跌落的更严重。再者,当高于100℃时,其功耗已经呈正温度系数,会导致恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110℃,居里温度高达240℃,满足高温使用要求。
5开关电源功率变压器的设计方法
单极性开关电源变压器的计算
设计前应确定下列基本条件:电路形式,工作频率,变换器输入最高和最低电压,输出电压电流,开关管最大导通时间,对漏感及分布电容的要求,工作环境条件等。
(1)单端反激式计算
1)变压器输入输出电压
pte怎么报名
一次绕组输入电压幅值UP1=Ui-△U1
式中:Ui——变换器输入直流电压(V);△U1——开关管及线路压降(V);二次绕组输出电压幅值UP2=U02+△U2
UPi=U0i+△Ui 式中:U02…U0i——直流输出电压(V);△U2…△Ui——整流管及线路压降(V)
2)一次绕组电感临界值(H)
式中:n——变压器匝数比n=tonUp1/toffUp2
ton——额定输入电压时开关管导通时间(μs);toff——开关管截止时间(μs)
T——开关电源工作周期(μs),T=1/f,f:工作频率(Hz);Po——变压器输出直流功率(W)通常要求一次绕组实际电感Lp1≥Lmin
石家庄英语角
3)确定工作磁通密度
单端反激式变压器工作在单向脉冲状态,一般取饱和磁通密度值(Bs)的一半,即脉冲磁通密度增量
△Bm=BS/2(T)
4)计算磁心面积乘积
Sp=392Lp1Ip1D12/△Bm(cm4) 式中:Ip1——一次绕组峰值电流;
Ip1=2Po/Up1minDmax(A) 式中:Up1min——变压器输入最低电压幅值(V)Dmax——最大占空比,Dmax=tonmax/T;D1——一次绕组导线直径(mm),由一次绕组电流有效值I1确定,单向脉冲时
I1=Ip1(ton/T)0.5
5)空气隙长度
lg=0.4πLp1Ip12/△Bm2SC(cm)
6)绕组匝数计算
一次绕组,有气隙时N1=△Bmlg×104/0.4πIp1(匝)无气隙时(匝)
式中:LC——磁心磁路长度(cm)
μe——磁心有效磁导率,由工作的磁通密度和直流磁场强度及磁性材料决定,查阅磁心规格得出。
二次绕组N2=[Up2(1-Dmax)/Up1minDmax]N1
今井翼Ni=[Upi(1-Dmax)/UpiminDmax]N1
(2)单端正激式计算
单端正激式电路工作的特点是一、二次绕组同时工作,另加去磁绕组,因此计算方法与双极性电路类似。
1)二次绕组峰值电流等于直流输出电流,即IP2=I02
2)二次绕组电压幅值
开关电源功率变压器的设计方法
Up2=(Uo2+△U2)/D(V)
式中:Uo2——输出直流电压(V)
△U2——整流管及线路压降(V)
D——额定工作状态时的占空比D=ton/T
3)变压器输出功率P2= (DUp2Ip2)(W)
式中:Up2——变压器输出电压幅值(V)
Ip2——二次绕组峰值电流(A)
4)确定磁心体积Ve=(12.5βP2×103)/f(cm3)
式中:β——计算系数,工作频率f=30~50kHz时,β=0.3
由Ve值选择接近尺寸的磁心。
5)一次绕组匝数N1=(Up1ton×10-2)/f(匝)
mulder
式中:Up1——变压器输入额定电压幅值(V)
6)二次绕组匝数N2=(Up2/Up1)N1;Ni=UpiN1/Up1
7)去磁绕组匝数NH=N1
8)绕组电流有效值二次侧:I2=Ip2
一次侧:I1=Up2I2/Up1
去磁:IH=(5~10)%I1
文本仅供参考,感谢下载!
festival
文本仅供参考,感谢下载!

本文发布于:2023-05-18 09:54:07,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/90/113113.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:变压器   磁心   电压   绕组   磁通   密度   功率
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图