相交线与平行线 专题训练题
1、如图1,AB∥CD,在AB、CD内有一条折线EPF.
(1)求证:∠AEP+∠CFP=∠EPF.
(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.
(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.
(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为 ∠P+n乱七八糟英文∠Q=360° .(直接写结论)
(1)证明:如图1,过点P作PG∥AB,,
∵AB∥CD,
∴PG∥CD,
∴∠AEP=∠1,∠CFP=∠2,
又∵∠1+∠2=∠EPF,
∴∠AEP+∠CFP=∠EPF.
(2)如图2,,
由(1),可得
∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,
∵∠BEP的平分线与∠DFP的平分线相交于点Q,
∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,
∴∠EPF+2∠EQF=360°.
(3)如图3,,
由(1),可得
∠P=∠AEP+英语在线阅读CFP,∠Q=∠BEQ+∠DFQ,
∵∠BEQ=∠BEP,∠DFQ=∠DFP,
allocate∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×greeting是什么意思(360°﹣∠P),
∴∠P+3∠Q=360°.
(4)由(1),可得
∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,
∵∠BEQ=∠BEP,∠DFQ=∠DFP,
∴∠Q=∠BEQ困境的意思+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),
∴∠P+nextremepapers∠Q=360°.
故答案为:∠P+n∠Q=360°.
2、如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.
①则∠EOF= .(用含x的代数式表示)
的意思
②求∠AOC的度数.
解:(1)由对顶角相等可知:∠BOD=∠AOC=70°,
∵∠FOB=∠DOF﹣∠BOD,
∴∠FOB=90°﹣70°=20°,
∵OE平分∠BOD,
∴∠BOE=∠BOD=×70°=35°,
∴∠EOF=∠FOB+∠BOE=35°+20°=55°,
(2)①∵OE平分∠BOD,
∴∠BOE=∠DOE,
∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,
∴∠COE=∠AOE=x,
∵OF平分∠COE,
∴∠FOE=x,
故答案为:;
②∵∠BOE=∠FOE﹣∠FOB,
∴∠BOE=x﹣15°,
∵∠BOE+∠AOE=180°,
∴x﹣15°+x=180°,
解得:x=130°,
哥伦布发现新大陆∴∠AOC=2∠BOE=2×(180°﹣130°)=100°.
3、已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.
解:理由是:∵AD平分∠EAC,
∴∠1=∠EAC,
∵∠EAC=∠B+∠C,∠B=∠C,
∴∠C=∠EAC,
∴∠C=∠soddy1,
∴AD∥BC.
4、阅读下面的推理过程,在括号内填上推理的依据,如图:
因为∠1+∠2=180°,∠2+∠4=180°(已知)
所以∠1=∠4,( 同角的补角相等 )
所以a∥c.( 内错角相等,两直线平行 )
又因为∠2+∠3=180°(已知)
∠3=∠6( 对顶角相等 )
所以∠2+∠6=180°,( 等量代换 )
所以a∥b.( 同旁内角互补,两直线平行 )
所以b∥c.( 平行与同一条直线的两条直线平行 )
解:因为∠1+∠2=180°,∠2+∠4=180°(已知),
所以∠1=∠4,(同角的补角相等)
所以a∥c.(内错角相等,两直线平行)
又因为∠2+∠3=180°(已知)
∠3=∠6(对顶角相等)
所以∠2+∠6=180°,(等量代换)
所以a∥b.(同旁内角互补,两直线平行)
所以b∥lean backc.(平行与同一条直线的两条直线平行).