2020年中考数学二轮复习专题:圆的综合(求阴影部分面积)
1.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.
(1)求证:EC是⊙O的切线;
(2)当∠D=30°时,求阴影部分面积.
2.如图,AB是⊙O的直径,点医务室D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若美国vs英国⊙O的半径为3,求图中阴影部分的面积.
3.如图,AB为⊙O的直径,C、D是半圆ABvomit的三等分点,过点C作AD延长线的垂线CE,垂足为E.
(1)求证:CE是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
4.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG
⊥BA,垂足为G.
(1)求证:FG是⊙O的切线;
(2)已知FG=2,求图中阴影部分的面积.
5.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.
(1)求证:AC是⊙O的切线;
(2)若CE=AE=2,求阴影部分的面积.
6.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.
(1)求证:直线AD是⊙O的切线;
(2)若直径BC=4,求图中阴影部分的面积.
7.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.
(1)求证:BD是⊙O的切线;
(2)求图中阴影部分的面积.
8.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.
(1)求证:直线DF是⊙O的切线;
(2)求证:BC2=4CF•AC;
(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.
9.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在snipAB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.
(1)求证:EM是⊙O的切线;
(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).
10.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在英语六级试题AB上,⊙O经过A、D两点,交AC于点E,交AB于点Fampule.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径是2cm,E是的中点,求阴影部分的面积(结果保留π和根号)
11.如图,在Rt△ABC中,∠B=90°,∠BAC口语交际题的平分线AD交BC于点D,点E在AC上,以AE为直径的gnet⊙O经过点D.
(1)求证:①BC是⊙O的切线;
②CD2=CE•CA;
(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.
12.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.
(1)求证:
①AO=AG.
②BF是⊙O的切线.
(2)若BD=6,求图形中阴影部分的面积.
13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.
(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;
(2)求证:shirt的意思DF是⊙O的切线;
(3)求证:∠EDF=∠DAC.
14.如图,已知AB是⊙O的直径,Camericanpie是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.