【pyradiomics学习】——影像组学特征⽬录
1、形状特征(14个)
Mesh Volume(⽹格体积)
Voxel Volume(体素体积)
Surface Area(表⾯积)
Surface Area to Volume ratio(表⾯积体积⽐)
Sphericity(球度)
Maximum 3D diameter(最⼤3D直径)
Maximum 2D diameter (Slice)(最⼤2D直径(切⽚))
Maximum 2D diameter (Column)(最⼤2D直径(列))
Maximum 2D diameter (Row)(最⼤2D直径(⾏))
Major Axis Length(最⼤轴长度)
Minor Axis Length(第⼆⼤轴长度)
Least Axis Length(最短轴长度)
Elongation(伸长率)
Flatness(平⾯度)
2、⼀阶特征(18个)
Energy(能量)
Total Energy(总能量)
Entropy(熵)
Minimum(最⼩值)
10th percentile(第⼗百分位)
90th percentile(第九⼗百分位)
Maximum(最⼤值)
Mean(均值)
Median(中值)
Interquartile Range(四分位范围)
Range(极差)
Mean Absolute Deviation (MAD)(平均绝对偏差)
Robust Mean Absolute Deviation(rMAD,鲁棒平均绝对偏差)
Root Mean Squared(RMS,均⽅根)
Skewness(偏度)
Kurtosis(峰度)
Variance(⽅差)
Uniformity(均匀性)
灰度共⽣矩阵特征(24个)
Autocorrelation(⾃相关)
Joint Average(联合平均)
Cluster Prominence(集群突出)
Cluster Shade(集群阴影)
Cluster Tendency(集群趋势)
Contrast(对⽐度)
Correlation(相关性)
Difference Average(差平均)
Difference Entropy(差熵)
Difference Variance(差⽅差)
Joint Energy(联合能量)
Joint Entropy(联合熵)
Informational Measure of Correlation 1(IMC 1,相关信息测度1)Informational Measure of Correlation 2(IMC 2,相关信息测度2)Inver Difference Moment(IDM,逆差矩)
Maximal Correlation Coefficient(MCC,最⼤相关系数)
Inver Difference Moment Normalized(IDMN,归⼀化逆差矩)
Inver Difference(ID,逆差)
Inver Difference Normalized(IDN,归⼀化逆差)
Inver Variance(逆⽅差)
Maximum Probability(最⼤概率)
Sum Average(和平均)
Sum Entropy(和熵)
Sum of Squares(和⽅差)
灰度区域⼤⼩矩阵特征(16个)
Small Area Emphasis(SAE,⼩⾯积强调)
Large Area Emphasis(LAE,⼤⾯积强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Gray Level Non-Uniformity Normalized(GLNN,归⼀化灰度不均匀性)Size-Zone Non-Uniformity(SZN,区域⼤⼩不均匀性)
Size-Zone Non-Uniformity Normalized(SZNN,归⼀化区域⼤⼩不均匀性)Zone Percentage(ZP,区域百分⽐)
Gray Level Variance(GLV,灰度⽅差)
Zone Variance(ZV,区域⽅差)
Zone Entropy(ZE,区域熵)
Low Gray Level Zone Emphasis(LGLZE,低灰度区域强调)
High Gray Level Zone Emphasis(HGLZE,⾼灰度区域强调)
Small Area Low Gray Level Emphasis(SALGLE,⼩区域低灰度强调)Small Area High Gray Level Emphasis(SAHGLE,⼩区域⾼灰度强调)Large Area Low Gray Level Emphasis(LALGLE,⼤区域低灰度强调)Large Area High Gray Level Emphasis(LAHGLE,⼤区域⾼灰度强调)
灰度⾏程矩阵特征(16个)
Short Run Emphasis(SRE,短⾏程强调)
Long Run Emphasis(LRE,长⾏程强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Gray Level Non-Uniformity Normalized(GLNN,归⼀化灰度不均匀性)
Run Length Non-Uniformity(RLN,⾏程不均匀性)
Run Length Non-Uniformity Normalized(RLNN,归⼀化⾏程不均匀性)
Run Percentage(RP,⾏程百分⽐)
Gray Level Variance(GLV,灰度⽅差)
Run Variance(RV,⾏程⽅差)
Run Entropy(RE,⾏程熵)
Low Gray Level Run Emphasis(LGLRE,低灰度⾏程强调)
High Gray Level Run Emphasis(HGLRE,⾼灰度⾏程强调)
Short Run Low Gray Level Emphasis(SRLGLE,短⾏程低灰度强调)
Short Run High Gray Level Emphasis(SRHGLE,短⾏程⾼灰度强调)
Long Run Low Gray Level Emphasis(LRLGLE,长⾏程低灰度强调)
Long Run High Gray Level Emphasis(LRHGLE,长⾏程⾼灰度强调)
邻域灰度差矩阵特征(5个)
Coarness(粗糙度)
Contrast(对⽐度)
Busyness(繁忙度)
Complexity(复杂度)
Strength(强度)
灰度相关矩阵(14个)
Small Dependence Emphasis(SDE,⼩依赖强调)
Large Dependence Emphasis(LDE,⼤依赖强调)
Gray Level Non-Uniformity(GLN,灰度不均匀性)
Dependence Non-Uniformity(DN,依赖不均匀性)
Dependence Non-Uniformity Normalized(DNN,归⼀化依赖不均匀性)
Gray Level Variance(GLV,灰度⽅差)
Dependence Variance(DV,依赖⽅差)
Dependence Entropy(DE,依赖熵)
Low Gray Level Emphasis(LGLE,低灰度强调)
High Gray Level Emphasis(HGLE,⾼灰度强调)
Small Dependence Low Gray Level Emphasis(SDLGLE,⼩依赖低灰度强调)Small Dependence High Gray Level Emphasis(SDHGLE,⼩依赖⾼灰度强调)Large Dependence Low Gray Level Emphasis(LDLGLE,⼤依赖低灰度强调)Large Dependence High Gray Level Emphasis(LDHGLE,⼤依赖⾼灰度强调)
⼩波特征
(744个) 待补充