金属有机框架在超级电容器中的应用
摘要螃蟹和酸奶
超级电容器是介于电池和传统电容器之间的一种新型储能器件, 与电池相比较,超级电容器一般具有比较高的功率密度和较好的倍率性能;因其具有这些特点,使其可以作为理想的储能装置而应用于移动通信、信息技术、消费电子、航空航天和后备电源系统等方面。根据储能原理,可以将超级电容器分为双电层电容和赝电容两类,双电层电容器常用活性炭作为电极材料,赝电容常用金属氧化物和导电聚合物作为电极材料,从结构上看, 超级电容器主要是由电极材料、电解液、集流体等组成。超级电容器的性能与电极材料和电解液有着密切的关系,所以研究超级电容器非常重要的一个方面就是如何研究出性能良好的电极材料和电解液,金属有机骨架(MOFs)是由含氧或氮的有机配体与过渡金属连接而形成的网状骨架结构, 其孔道是由金属和有机组分共同构成的,对有机分子和有机反应具有更大的活性和选择性。目前金属有机框架已广泛应用于催化、离子交换和储氢等方面,作为电极材料应用于锂离子电池中,并作为合成炭材料的模板应用于超级电容器中。本论文不仅成功的合成了一系列不同类型的金属有机框架,并成功将他们作为电极材料成功应用于超级电容器中,样品的结构表征手段有XRD, TEM, N2等温吸附脱附曲线,电化学测试手段有循环伏安,交流阻抗等,本论文主要研究内容和创新点如下:
(1)用溶剂热法的思想,基于异烟酸和硝酸镍成功合成了一系列金属有机框架材料,
并将其作为电极材料应用于超级电容器中,其中在5mV/s时最大比电容为634F/g,循环寿命测试显示在扫描速率为50 mV s−1时经过2000次循环后样品的比电容保持率为84%。
(2)成功制备了金属有机框架M3(BTC)2.12H2O (M=Ni和Co),并将其应用于超级电
容器电极材料中,其中Ni3(BTC)2.12H2O电极材料在5mV/s下比电容达到了429F/g,高扫描速率200mV/s下比电容为154F/g。
(3)一系列名为4-吡啶羧酸四水合物镍的金属有机框架被成功合成,其中在5mV/s时
最大比电容为1149F/g.
(4)首次将金属有机框架作为电极材料应用于超级电容器中,并且性能良好
关键词:超级电容器,金属有机框架,电化学性能,比电容
中国飞人苏炳添THE APPLICATION OF METAL ORGANIC FRAMEWORKS
FOR SUPERCAPACITORS
ABSTRACT
The supercapacitor (ESs) is a new type electrochemical energy storage device between the traditional dielectric capacitor and the battery. ESs have attracted incread interest due to their higher power density and long cycle life than batteries, so ESs are regarded as ideal energy storage devices to meet in mobile telecommunication, information technology, consumer electronics, aerospace, backup energy sources, and so on. According to the principle of energy-storage there are two types of supercapacitors: electric double-layer capacitor (EDLC) and faradaic pudocapacitor, electrical double-layer capacitor with activated carbon materials as electrodes, and the other is Faradic pudo-capacitor with metal oxides or conducting polymers as electrodes. The elementary structure of a supercapacitor is compod of electrode, electrolyte, current collector, and so on. The capacitor properties of the ESs are clod related with the electrode and electrolyte, so it is indispensable to develop an advanced supercapacitor device. Metal organic frameworks (MOFs) are new functional materials that combine a wide variety of properties and applications. They contain inorganic and organic networks that can be easily functionalid to get tuneable properties.They are commonly ud in nsing, catalysis, ion exchange, parations or gas storage, and as electrode material for lithium ion battery. They are also ud as a template for synthes of nanoporous carbons as electrode materials for supercapacitor. In this paper, A ries of Metal-Organic Frameworks were successfully synthesized for the first time ud as electrode materials for superca
pacitor. The samples were examined by X-ray diffraction (XRD), transition electron microscopy (TEM) and N2 adsorption/desorption isotherms. Capacitor properties of the samples were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The main results and innovations are as follows:
(1)A ries of Metal-Organic Frameworks bad on isonicotinic acid and nickel nitrate
were successfully synthesized by a solvothermal method as electrode materials for the first time ud as electrode materials for supercapacitor. The maximum specific capacitance is found to be 634 F g-1at 5 mV s-1and the stable cycling properties measurement showed the sample kept 84% after 2000 cycles at a 50 mV s−1 scan rate.
(2)A ries of Metal-Organic Frameworks bad on 1,3,5-benzenetricarboxylic (BTC)
acid and M(II) acetate hydrate (M=Co, Ni, and Zn) were successfully synthesized and named as M3(BTC)2·12H2O, The maximum specific capacitance of Ni3(BTC)2·12H2O is found to be 429 F g-1 at 5 mV s-1 and 154 F g-1 at 200 mV s−1 scan rate.
(3)A ries of Metal-Organic Frameworks of Nickel 4-pyridine carboxylate tetrahydrate牛骨汤的功效与作用
费尔马点were successfully synthesized, The maximum specific capacitance is found to be 1149
F g-1 at 5 mV s-1.
(4)A ries of Metal-Organic Frameworks as electrode materials for supercapacitor for
first time.
KEY WORDS:suprecapacitor, Metal-Organic Frameworks, electrochemical performance, specific capacitance
目录
第一章绪论 (1)
1.1引言 (1)
1.2超级电容器工作原理 (2)
1.2.1双电层电容原理 (3)
1.2.2法拉第电容器原理 (4)
1.3超级电容器结构 (5)
1.4超级电容器的应用 (7)
1.4.1在电动汽车中的应用 (8)
白毛仙姑1.4.2用于太阳能、风能发电装置辅助电源 (8)
1.4.3在税控机、税控收款机上的应用 (9)
1.4.4用于分布式发电系统 (9)
热运动1.4.5在国防科技中的应用 (9)
1.5国内外的发展与现状 (10)
1.6超级电容器电极材料的研究进展 (11)
1.6.1碳电极材料 (11)
1.6.2金属氧化物 (14)
1.6.3导电聚合物电极材料 (16)
1.6.4复合或混合型材料 (16)
1.7 金属有机框架在锂电池和超级电容器中的应用 (16)
1.8选题的背景意义和主要内容 (17)
1.8.1选题的背景 (17)
1.8.2选题的意义 (18)
1.8.3研究内容和创新点 (19)
第二章实验方法与原理 (22)
2.1实验原料和主要仪器 (22)
2.1.1 实验原料 (22)
2.1.2 主要实验仪器 (23)
2.2 电极的制备 (23)
2.3 材料的表征方法 (24)
2.3.1 X射线衍射技术(XRD) (24)
2.3.2 比表面积和孔径分布 (24)
2.4 电化学性能测试方法 (25)
2.4.1 循环伏安法 (25)
2.4.2 恒电流充放电法 (26)
2.4.3 循环寿命测试 (26)
2.4.4 交流阻抗法 (26)社会调研
2.5 本章小结 (27)
第三章以异烟酸为配体、Ni为金属离子的金属有机框架在超级电容器中的应用 (28)
3.1 引言 (28)
3.2 实验部分 (29)
3.2.1 实验药品 (29)
3.2.2金属有机框架的合成 (29)
3.2.3 电极的制备 (31)
3.2.4 电解液的选择 (32)
3.2.5 结构表征 (32)
整改承诺书3.2.6电化学测试 (32)
3.3 结果与讨论 (32)
3.3.1不同的反应物物质的量之比对材料性能的影响 (32)
3.3.2不同的溶剂热反应温度对材料性能的影响 (41)
3.3.3不同的溶剂热反应时间对材料性能的影响 (44)
3.4 本章小结 (48)
第四章金属有机框架M3(BTC)2.12H2O (M=Co, Ni)在超级电容器中的应用 (49)
4.1 引言 (49)
4.2 实验部分 (50)
4.2.1 实验药品 (50)
4.2.2金属有机框架的合成 (50)