合金反应机制纳米复合材料作为锂/钠离子电池负极的研究
议论句摘要
手抄报元宵节图片
勿怎么组词能源危机和环境污染问题是21世纪急需解决的重大问题。锂离子电池,作为一种新型高效的储能体系,已经被应用在许多小型电子设备上。由于锂离子电池(石墨)负极材料的比容量较小,所以锂离子电池能量密度很难满足大规模设备的需求,因此,开发高容量的锂离子电池负极材料是解决上述问题的关键。同时锂资源的匮乏和地表分布不均匀,进一步限制了其在大型储能设备上的应用。相对于锂离子电池,虽然钠离子电池能量密度低,但是地表资源丰富、廉价易得,所以钠离子电池非常适合应用于大规模储能设备。目前,工业应用的锂离子电池石墨负极并不适合作为钠离子电池的负极材料。所以开发一种具备高比容量、长循环寿命的钠离子电池负极材料非常重要。
在锂/钠离子电池负极材料方面,具有合金机制的负极材料因拥有较高的比容量和更好的安全性,而备受研究者的关注,尤其是锡基硫化物,铋基以及硒基材料。如锡的理论比容量为847 mA h g-1,铋的理论体积比容量为3765 mA h cm-3,硒的理论体积比容量为3253 mA h cm-3,但是这些材料在充放电过程中会出现严重的体积膨胀。如锡基材料在合金-脱合金的过程中体积膨胀率达到了358 %,所以会引起电极材料的粉化,最终导致容量的严重衰减。本文将针对上述
定位修改
材料的不足,通过两种途径对其进行改性研究。第一,对其进行碳包覆或者碳复合。这种方法既能缓冲
电极材料的粉化,又能提高电导率。第二,进行微纳米结构的设计。该方法不仅会适应电极材料的体积膨胀,还会缩短离子的扩散自由程,有利于离子的传输,进而可以提高材料整体的电化学性能。本文研究内容如下:银耳莲子红枣羹
(1)纳米结构的SnS限制在三维多孔碳中作为锂/钠离子电池耐用的负极:以二氧化硅球为模板,采用碳化和硫化的方法制备SnS 纳米颗粒和三维多孔碳的复合材料。并对该复合材料作为锂/钠离子电池负极材料进行研究。在锂离子电池中,1 A g-1的电流密度下循环1000圈后,比容量还保持在869 mA h g-1。在钠离子电池中,100 mA g-1的电流密度下循环100圈比容量为400 mA h g-1。同时表现出了良好的倍率性能(锂离子电池中,在3 A g-1下容量保持在550 mA h g-1,钠离子电池中,5 A g-1下容量保持在220.9 mA h g-1)。三维SnS/C复合材料优异的电化学性能主要归因于三维多孔碳结构和合适尺寸的SnS纳米颗粒。这不仅提高了材料的导电性,而且保持了材料的结构完整性,进而提高了材料的循环稳定性。
(2)氮掺杂的碳纳米管包覆铋纳米棒作为钠离子电池长循环高倍率的负极:本文以Bi2S3纳米带为模板,合成了氮掺杂的碳纳米管包覆铋纳米棒的复合材料(Bi@N-C)。Bi@N-C复合材料在半电池中具有优越的电化学性能,包括高比容量(50 mA g-1下容量保持在410 mA h g-1)、长循环寿命(1 A g-1下1000圈循环后容量保持在302 mA h g-1)和高倍率容量(2 A g-1下容量为368 mA h g-1)。同时该电极与
美容养颜茶配方
自制的Na3V2(PO4)3/C组合成全电池时,不仅具有高的能量密度(功率密度为1.19 kW kg-1时能量密度保持在119 W h kg-1total),而且具有良好的循环稳定性(在1 A g-1电流密度下循环800圈后容量保持在240 mA h g-1)。通过上述研究表明,Bi@N-C复合材料良好的电化学性能归因于独特的碳纳米管包覆铋纳米棒的结构。外层的碳纳米管不仅可以调节循环过程中Bi的体积膨胀,稳定固体电解质界面层,还可以提高电子电导率。
(3)硒和介孔碳球复合作为钠离子电池长循环高倍率的负极:本文利用简单的方法将硒载入介孔碳球(Se/MCS)作为钠离子电池负极材料。Se/MCS电极材料在半电池中表现出了优异的电化学性能:高的容量(0.05 A g-1下100圈循环后容量保持在367 mA h g-1),良好的倍率性能(3 A g-1的电流密度下容量保持在268 mA h g-1),以及长的循环寿命(1 A g-1下1500圈循环后容量保持在280 mA h g-1)。当和Na3V2(PO4)3/C组合成全电池时,也具有良好的电化学性能(3 A g-1的电流密度下容量保持在100 mA h g-1)。Se/MCS良好的电化学性能主要是因为这种拥有介孔的空心碳球,不仅可以适应Se的体积变化,防止Se的团聚,还有利于提高活性物质的利用率。
关键词:三维SnS/C纳米复合材料,Bi@N-C纳米复合材料,Se/MCS 纳米复合材料,锂离子电池,钠离子电池
THE STUDY ON ALLIY-BASED NANOCOMPOSITE
MATERIALS AS ANODE FOR LITHIUM/SODIUM ION
在线听力测试BATTERIES
ABSTRACT
In the 21st century, energy crisis and environmental pollution have been a nsitive and urgent problem. Lithium-ion batteries, as new and efficient energy storage systems, have been successfully ud in small electronic devices. The anode materials (graphite) of lithium-ion battery cannot meet the large-scale equipments demand due to its inherent low energy density. One of the key strategies for solving this problem is development of the high-capacity anode materials for lithium-ion batteries. The application of lithium-ion batteries is further limited in large-scale energy storage equipment by the uneven distribution of resources. Compared with lithium-ion battery, low energy density sodium ion battery is very suitable for large-scale energy storage equipment due to the natural abundance, lower price. However, the direct utilization of the well-developed lithium-ion battery graphite anodes for soddium-ion battery turns out to be unsuccessful becau of the mismatch of graphite lattice and sodium ion. Therefore, it is crucial to develop robust anode
道理的英语materials with high specifc capacity and long cycling life toward practical applications.
In the anode materials of lithium/sodium ion batteries, the alloy-bad nanocomposites have great potential for application due to their higher theoretical specific capacity and better safety, especially tin-bad sulfides, bismuth-bad and lenium-bad materials. For example, the theoretical specific capacity of Sn is 847 mA h g-1, the theoretical specific capacity of Bi is 3765 mA h cm-3, and the theoretical specific capacity of Se is 3253 mA h cm-3. They will posss volume expansion problems in the charge and discharge process, such as the volume expansion rate of tin-bad materials reached 358 % in the process of alloy-dealloying. The pulverization aroud by the volume variation will lead to rious capacity decay. In this paper, two strategies are adopted to solve the issues. First, wrapping or combining the materials with carbon materials is implemented, which can not only accommodate volume change, but also increa electrical conductivity. Second,specific structural designs have been adopted, which could shorten the diffusion of ion path and be favor for ion/mass transport, ultimately enhance their electrochemical performance.The contents of the works are as below:
(1) Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries:Nanoconfined SnS in 3D