前言
随着高校的持续扩张,每年应届毕业生的数目都在不断增长,伴随而来的是应届毕业生的就业压力也越来越大。
在这样的背景下,就业变成一个买方市场的趋势越来越明显。为了找到一个称心的工作,绝大多数应届毕业生都必须反复经历简历筛选、电话面试、笔试、面试等环节。在这些环节中,面试无疑起到最为重要的作用,因为通过面试公司能够最直观的了解学生的能力。
为了有效地准备面试,面经这个新兴概念应运而生。笔者在当初找工作阶段也从面经中获益匪浅并最终找到满意的工作。为了方便后来者,笔者花费大量时间收集并整理散落在茫茫网络中的面经。不同行业的面经全然不同,笔者从自身专业出发,着重关注程序员面试的面经,并从精选出若干具有代表性的技术类的面试题展开讨论,希望能给读者带来一些启发。
由于笔者水平有限,给各面试题提供的思路和代码难免会有错误,还请读者批评指正。另外,热忱欢迎读者能够提供更多、更好的面试题,本人将感激不尽。
(01)把二元查找树转变成排序的双向链表
[折叠]
题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。
比如将二元查找树
大小七孔 10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表
4=6=8=10=12=14=16。
分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。
思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。
思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。
参考代码:
首先我们定义二元查找树结点的数据结构如下:
struct BSTreeNode 想啊很想啊// a node in the binary arch tree
{
int m_nValue; // value of node
趣味纸牌接龙 BSTreeNode *m_pLeft; // left child of node
BSTreeNode *m_pRight; 伍佰的歌// right child of node
};
思路一对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-arch-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
// asRight - whether pNode is the right child of its parent
// Output: if asRight is true, return the least node in the sub-tree
// el return the greatest node in the sub-tree
///////////////////////////////////////////////////////////////////////
BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)沉字开头的成语
{
if(!pNode)
return NULL;
混龄教育
BSTreeNode *pLeft = NULL;
BSTreeNode *pRight = NULL;
// Convert the left sub-tree
if(pNode->m_pLeft)
pLeft = ConvertNode(pNode->m_pLeft, fal);
// Connect the greatest node in the left sub-tree to the current node
if(pLeft)
{
pLeft->m_pRight = pNode;
pNode->m_pLeft = pLeft;
}
// Convert the right sub-tree
if(pNode->m_pRight)
pRight = ConvertNode(pNode->m_pRight, true);
// Connect the least node in the right sub-tree to the current node
if(pRight)
{
pNode->m_pRight = pRight;
pRight->m_pLeft = pNode;
}
BSTreeNode *pTemp = pNode;
// If the current node is the right child of its parent,
// return the least node in the tree who root is the current node
if(asRight)
夜晚上 {
while(pTemp->m_pLeft)
pTemp = pTemp->m_pLeft;考核意见
}
// If the current node is the left child of its parent,
// return the greatest node in the tree who root is the current node
el
{
while(pTemp->m_pRight)
pTemp = pTemp->m_pRight;
}
return pTemp;
}
///////////////////////////////////////////////////////////////////////
// Covert a binary arch tree into a sorted double-linked list
// Input: the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert(BSTreeNode* pHeadOfTree)
{
// As we want to return the head of the sorted double-linked list,
// we t the cond parameter to be true
return ConvertNode(pHeadOfTree, true);
}
思路二对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-arch-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
// pLastNodeInList - the tail of the double-linked list
///////////////////////////////////////////////////////////////////////
void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
{
if(pNode == NULL)
return;
BSTreeNode *pCurrent = pNode;
// Convert the left sub-tree
if (pCurrent->m_pLeft != NULL)
ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
// Put the current node into the double-linked list
pCurrent->m_pLeft = pLastNodeInList;
if(pLastNodeInList != NULL)
pLastNodeInList->m_pRight = pCurrent;
pLastNodeInList = pCurrent;
// Convert the right sub-tree
if (pCurrent->m_pRight != NULL)
ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
///////////////////////////////////////////////////////////////////////