A note on connected bipartite graphs of fixed order and size with maximal index

更新时间:2023-05-23 14:57:40 阅读: 评论:0

Linear Algebra and its Applications 483(2015)
评价方案
21–29
Contents lists available at ScienceDirect
Linear  Algebra  and  its  Applications
羊肉萝卜饺子
/locate/laa
A  note  on  connected  bipartite  graphs  of  fixed  order
and  size  with  maximal  index
Miroslav Petrovića , Slobodan  K.Simića ,b ,∗
a State  University  of  Novi  Pazar, Vuka  Karadžića  bb, 36 300 Novi  Pazar, Serbia
b
Mathematical  Institute, Serbian  Academy  of  Sciences  and  Arts, P.O. Box  367,
11001 Belgrade, Serbia a  r  t  i  c  l  e  i  n  f  o a  b  s  t  r  a  c  t
Article history:Received  20 February  2015Accepted  8 May  2015A vailable  online  2 June  2015Submitted  by  S. Friedland
MSC:
05C50
Keywords:
Adjacency  matrix
Graph  spectrum
Largest  eigenvalue
Double  nested  graphs
Bipartite  chain  graphs
降频
In  this  paper  the  unique  graph  with  maximal  index  (i.e. the
largest  eigenvalue  of  the  adjacency  matrix) is  identified  among
all  connected  bipartite  graphs  of  order  n and  size  n  +k , under
the  assumption  that  k ≥0and  n  ≥k +5.
©2015 Elvier  Inc. All rights rerved.1. Introduction
Let  G  =(V, E )be  a  simple  graph  with  vertex  t  V and  edge  t  E . Its  order  is  |V |, denoted 
by  n , and  its  size  is  |E |, denoted  by  m . Let  A  =A (G )be  the  (0, 1)-adjacency  matrix  of  G . Since  A is  symmetric, its  eigenvalues  are  real, and  also  called  the  eigenvalues  *Corresponding  author.
E-mail  address:petrovic@kg.ac.rs (M.Petrović), sksimic@mi.sanu.ac.rs (S.K.Simić).
/10.1016/j.laa.2015.05.013
0024-3795/©2015 Elvier  Inc. All rights rerved.
22M.Petrović,S.K.Simić/Linear Algebra and its Applications 483(2015)21–29of  G . The  largest  eigenvalue  of  G is  denoted  by  ρ(G ), and  also  called  the  spectral  radius , or  index for  short. For  the  least  eigenvalue  of  G we  write  λ(G ). If  clear  from  the  context, graph  names  are  usually  omitted. For  all  other  terminology  and  notation  the  reader  is  referred  to  [9].
In  [3], Bell  et  al. studied  connected  graphs  who  least  eigenvalue  is  minimal  among  graphs  of  prescribed  order  and  size. Their  main  structural  result  reads:
Theorem  1. Let  G be  a  connected  graph  who  least  eigenvalue  is  minimal  among  the  connected  graphs  of  order  n and  size  m (n  −1 ≤m  < n
2 ). Then  G is
(i)a  bipartite  graph, or
(ii)a  join  (or  complete  product) of  two  nested  split  graphs  (not  both  totally disconnected).
Recall, a  graph  is  called  a  nested  split  graph (or  NSG for  short) if  its  vertices  can  be  ordered  so  that  jq ∈E (G )implies  ip  ∈E (G )whenever  i  ≤j and  p  ≤q . Nested  split  graphs  are  in  fact  threshold  graphs, so  {2K 2, P 4, C 4}-free  graphs.
In  [4]and  [11], further  steps  have  been  made  in  investigating  graphs  G for  which  the  least  eigenvalue  λ(G )is  minimal  among  connected  graphs  of  prescribed  order  and  size. Namely, the  structure  of  connected  bipartite  graphs  of  prescribed  order  and  size  with  maximal  index  is  studied, and  thereby  the  structure  of  tho  with  minimal  least  eigen-value. The  relevance  of  the  investigations  stems  from  Theorem 1(i), and  well-known  fact  that  λ(G ) =−ρ(G )for  any  bipartite  graph  G (e, e.g. [9], p. 56). Before  we  state  the  main  result  from  [4]and  [11]we  first  introduce  a  further  class  of  bipartite  graphs, namely  double  nested  graphs (also  called  bipartite  chain  graphs , e  for  example  [5]). As  is  well  known  from  the  literature, the  graphs  are  {2K 2, C 3, C 5}-free  graphs  (e, for  example, [2]).
那一段难忘的时光Let  G be  a  connected  bipartite  graph  with  colour  class  U and  V . We  say  that  G is  double  nested  graph (or  DNG for  short) if  there  exist partitions
黄豆排骨汤的做法U =U 1˙∪U 2˙∪...˙∪U h and V =V 1˙∪
V 2˙∪...˙∪V h ,such  that  the  neighbourhood  of  each  vertex  in  U 1is  V 1˙∪
泡馍的做法
V 2˙∪...˙∪V h , the  neighbourhood  of  each  vertex  in  U 2is  V 1˙∪
V 2˙∪...˙∪V h −1, and  so  on. If  |U i | =m i and  |V i | =n i (i  =1, 2, ..., h ) then  we  write
G =D (m 1,m 2,...,m h ;n 1,n 2,...,n h ).(1)
Such  a  graph  is  depicted  in  Fig.1. Any  fat  circle  corresponds  to  a  co-clique  of  an  ap-propriate  size; any  line  between  two  fat  circles  means  that  each  vertex  in  one  fat  circle  is  adjacent  to  all  vertices  in  the  other  fat  circle.
For  the  double  nested  graphs  the  next  two  relations  hold:
n (G )=m 1+···+m h +n 1+···+n h ,
(2)m (G )=m 1(n 1+···+n h )+m 2(n 1+···+n h −1)+···+m h n 1.(3)
M.Petrović,S.K.Simić/Linear Algebra and its Applications483(2015)21–2923 Fig.1.The structure of D(m1,m2,...,m h;n1,n2,...,n h).
Fig.2.The graph D(1,1;k+2,n−k−4).
The following result is taken from[11].
Theorem2.Let G be a graph for whichρ(G)is maximal among all connected bipartite graphs of order n and size n+k,with k≥0and n≥k+5.Then G is double nested graph(1)and the following hold:
10h>1,
20exactly one of the parameters m1and n1is equal to1,
30if h=2then G=D(1,1;k+2,n−k−4)(e Fig.2),
40h=3.
24M.Petrović,S.K.Simić/Linear Algebra and its Applications483(2015)21–29
In this paper we prove that the graph G=D(1,1;k+2,n−k−4)is the unique graph with maximal index among connected bipartite graphs of order n and size n+k(with k≥0and n≥k+5).We also determine its index,which features as the best possible upper bound for the index of graphs in the obrved class.
2.The main result
Wefirst prove the following auxiliary result:
Lemma1.Let m2,m3,...,m h,n1,n2,...,n h−1(h≥3)and k be natural numbers with n1≥2.If
k+1≥m2(n1+···+n h−1−1)+···+m h−1(n1+n2−1)+m h(n1−1)(4) then
k+3≥(m2+m3+···+m h)+(n1+n2+···+n h−1).(5)
Proof.Let M i,j=
j
s=i m s and N i,j=
j
市场总监职责
s=i
n s(i≤j).Rewriting(4)as
k+1≥m2(N1,h−1−1)+m3(N1,h−2−1)+···+m h(N1,1−1),
and having in view that ab≥a+b−1for a,b≥1,we obtain that
k+1≥M2,h+N1,h−1+N1,h−2+···+N1,1−2(h−1).
In view of assumptions,we obtain for h=3:
k+1≥M2,3+N1,2+n1−4,
whence
k+3≥M2,3+N1,2+n1−2≥M2,3+N1,2.
For h≥4we have
k+1≥M2,h+N1,h−1+(h−2)n1+N2,h−2+···+N2,2−2(h−1) >M2,h+N1,h−1+(h−2)(n1−2)−2,
whence
k+3>M2,h+N1,h−1,
as required by(5).
This completes the proof.2
M.Petrović,S.K.Simić/Linear Algebra and its Applications483(2015)21–2925
Let X=(x1,x2,...,x n)T be a column vector in R n,and G a double nested graph (e(1))on vertices v1,v2,...,v n.Then X can be considered as a function defined on the vertex t of G,and which maps a vertex v i to X(v i),also denoted by x v
i
,or x i for short.We say that x i is the weight of the vertex v i obtained from X.One canfind that λis an eigenvalue of G corresponding to the eigenvector X if and only if X is non-zero and
λx i=
v i v j∈E(G)
x j for each i=1,2,...,n.(6)
Eqs.(6)are called(λ,X)-eigenequations of G.
For a connected double nested graph G of order n and size m,letρ=ρ(G)be its index.Since A=A(G)is a nonnegative and irreducible matrix,an eigenvec-tor X=(x1,x2,...,x n)T corresponding toρcan be taken to be positive.By the (λ,X)-eigenequations(6)we have that all vertices within the ts U i and V i forfixed i (1≤i≤h)have the same weights.Let x u=a i if u∈U i,and let x v=b i if v∈V i (i=1,2,...,h).
In the next lemma some relations on bounding the b i’s(similar relations for a i’s are obtained by interchanging the values of the m i’s and n i’s)are given.The next lemma is taken from[2](e Lemma3.4).Now it is restated to some extent to fulfill our further of needs.
Lemma2.Let G=D(m1,m2,...,m h;n1,n2,...,n h),and letρbe the index of G.Fur-thermore,let
αi=m1+···+m h+1−i(i=1,2,...,h)
βi=m2n h+m3(n h+n h−1)+···+m h+1−i(n h+···+n i+1)(i=1,2,...,h−1)βh=0.
Then for any i=1,2,...,h we have
b i≤a1
ρ
对香烟αi−
m1
ρ
βi
.
Theorem3.The graph G=D(1,1;k+2,n−k−4)(e Fig.2)is the unique graph with maximal index among all connected bipartite graphs of order n and size m,with k≥0 and n≥k+5.
Proof.Let G be a graph for which the largest eigenvalueρ=ρ(G)is maximal among all connected bipartite graphs of order n and size n+k,with k≥0and n≥k+5.Then, by Theorem2,G is double nested g
raph

本文发布于:2023-05-23 14:57:40,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/925216.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:饺子   评价   难忘   黄豆   职责   萝卜   方案   时光
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图