ABSTRACT
Energy crisis and environmental pollution are two key problems to be solved urgently.Developing sustainable, pollution-free clean energy technology is the key to solve the problem. Among them, the development of clean energy regeneration technology, electrolytic water, metal air battery and dye battery are very promising technologies. At prent, the technologies are mainly limited to the development of highly efficient and clean catalysts, especially the oxygen evolution reaction (OER) catalysts, which are very slow in reaction kinetics. Since scientists discovered that nickel iron layered double hydroxides (NiFe-LDH) can be ud as cheap and efficient OER catalysts, scientists in various countries have devoted themlves to more efficient catalytic methods. In this paper, NiO/NiFe-LDH nanocomposite catalysts with clo chemical bonding were synthesized on the basis of ultrathin NiFe-LDH nanosheets; Through the construction of three-dimensional space structure to realize the intermediate product of OER reaction active sites adsorption, greatly reduce the adsorption of intermediate product of each step is to break through the traditional single linear relationship between adsorption transition metal catalytic active sites can improve the catalytic activity of OER, NiFe-LDH of the great.
1.In this paper, the composite catalysts of NiO and NiFe LDH in situ were successfully prepared by las
er ablation of NiFe alloy target. The composite catalysts with different NiO content were obtained by controlling the concentration of the liquid pha.
2.Compared with NiO/NiFe LDH composite catalyst, pure pha NiFe LDH catalyst and NiO nanoparticle catalyst, the performance of oxygen evolution showed that the composite catalyst exhibited excellent water oxidation performance.
3.Through theoretical calculations show that the catalytic site of the most excellent, and Bader charge analysis of valence change optimal active sites in the catalytic process bad on; bad on this, there is no further exploration of high activity of Ni in the experiments, theoretical model and calculation accuracy of reaction of binding sites of double EELS analysis and validation of X-ray.
4. This interface three spatial structure of multisite collaborative help adsorption oxygen evolution reaction intermediates, greatly reduce the adsorption of each step of reaction, adsorption and breakthrough of single transition metal catalytic activity of traditional adsorption four step reaction intermediates can be caud by the linear relationship
between the linear relationship and the 0.37 V the theory of potential. It is the first time to break the linear relationship of OER reaction in the form of interface space structure, which has important guidi
ng significance for the design and synthesis of more excellent catalysts in the future.
KEY WORDS: NiFe LDH, Oxygen Evolution, Interface Structure, Linear Relationship, Theoretical Overpotential
目录
第一章绪论 (1)
1.1 引言 (1)
1.2纳米材料简述 (2)
1.3 复合纳米材料 (2)
1.4 脉冲激光烧蚀法 (3)
1.4.1脉冲激光液相烧蚀法 (5)
我有一只小毛驴儿歌1.4.2 脉冲激光气相烧蚀法 (6)
1.5 电催化水氧化催化剂 (7)
1.5.1 电催化水氧化 (7)
芦荟有什么用处1.5.2 镍铁水滑石催化剂 (9)
1.6 本论文的研究思路和创新之处 (12)
第二章实验原料与实验装置 (15)
2.1 实验原料 (15)
2.2 实验设备 (15)
2.2.1 纳秒脉冲激光器 (15)
2.2.2 超声波清洗器 (16)
2.2.3 分析天平 (16)
2.2.4 超高速离心机 (17)
2.2.5 真空冷冻干燥机 (17)
泡红椒2.2.6 移液枪 (17)
2.3 表征设备 (17)
2.3.1 透射电子显微镜(TEM) (17)
2.3.2 X射线衍射仪(XRD) (14)
2.3.3 激光显微拉曼光谱仪(Raman) (18)
2.3.4 X射线光电子能谱测试仪(XPS) (18)
2.3.5 原子力显微镜(AFM) (18)
2.3.6 电感耦合等离子体共振光谱(ICP-MS) (19)
2.3.7 电化学工作站 (19)
2.4 实验过程 (19)
2.4.1 镍铁合金靶的清洗 (19)
2.4.2 Ni/NiFe-LDH复合前驱体及对比样品的制备 (19)
2.4.3 Ni/NiFe-LDH复合前驱体的清洗及干燥 (20)
2.4.4 NiO/NiFe-LDH复合催化剂的合成及测试 (20)
第三章NiFe-LDH复合催化剂的制备 (21)
3.1 引言 (21)
3.2 实验部分 (22)
3.3 NiFe-LDH复合材料的合成 (22)
宪法讲座
3.3.1 NiFe合金靶成分比例的影响 (22)
3.3.2 液相组成对产物性能的影响 (25)
3.3.3 液相浓度对产物性能的影响 (27)
3.4本章小结 (29)
第四章NiO/NiFe-LDH复合催化剂性能探究 (31)
4.1 引言 (31)
4.2 NiFe-LDH复合物的表征 (31)
清明节干什么4.2.1 NiFe-LDH复合前驱体的表征 (31)
4.2.2 NiFe-LDH复合前驱体的转变 (34)
移动校园招聘
4.2.3 NiO/NiFe-LDH对比结构分析 (37)
4.3 NiO/NiFe-LDH复合物的性能表征 (39)
4.3.1 NiO/NiFe-LDH复合物的OER性能 (39)
4.3.2 NiO/NiFe-LDH优异性能的影响因素 (43)
4.3.3 NiO/NiFe-LDH合适的NiO含量 (46)
普法依法治理
4.4 NiO/NiFe-LDH复合物的性能机理探究 (50)
4.4.1 NiO/NiFe-LDH复合物中Fe的价态分析 (50)
4.4.2 NiO/NiFe-LDH复合物中Ni的价态分析 (52)
4.4.3 NiO/NiFe-LDH复合物理论计算分析 (54)
4.4.4 NiO/NiFe-LDH复合物本征活性 (59)
4.5 本章小结 (60)
第五章全文总结及展望 (63)
5.1 全文总结 (63)
5.2 展望 (64)
参考文献 (65)
发表论文和参加科研情况说明 (71)
致谢 (73)
第一章绪论
百度翻译图片第一章绪论
1.1 引言
材料发展的历程侧面反映了人类社会发展的文明史,材料的发展及其应用是人类社会文明和进步的重要里程碑,人类的历史是一部材料不断进步发展的历史。在这漫漫的历史长河里,1965年诺贝尔物理学奖获得者费曼(Richard Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”
时间仅仅过去二十几年,直到1982年,费曼的预言便成了现实。德国科学家宾尼(Binning) 等利用扫描隧道显微镜在镍板上将硅原子组成了“IBM” (国际商用机器公司的英文缩略语) 的字样。不久,日本科学家又将硅原子堆成了一个金字塔。于是,人类便悄悄的进入了一个崭新的时代,纳米材料的思潮席卷大地,这是一个人类主宰原子和分子的时代,而不仅仅是被动地去认识和利用大自然造就的原子和分子。纳米材料在人类社会的方方面面表现出奇特的性质使其受到全世界的广泛关注。如今,纳米材料已渗透入现代文明的各个领域,发挥着至关重要的作用,从材料的本质出发,到材料的结构设计,最后到材料的加工制备方法,纳米材料已经完成了从初步探索到可控合成与器件化的重要转变,纳米科技的日新月异的发展展现出其强大的生命力和对社会经济发展的推动作用。
新能源、节能减排和环境保护对纳米材料与技术的需求日益凸显,发展纳米催化材料可实现传统化石能源的高效利用,减少污染物的排放。开发新型高效的储能和能量转换器件,解决能源危机与环境污染的现状,大力发展清洁能源已被全世界各国制定成国家的重大发展战略。纳米材料还蕴藏着无穷无尽的发展潜力,还没有向我们展现出其全部能力,这需要人类一代又一代科研工作者在这条道路上义无反顾的继续探索前进。只有在基础科学研究上做到成熟, 将来才有可能实际应用, 有可能将各种造福于人类的技术普遍开来。