南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

更新时间:2023-05-19 02:02:16 阅读: 评论:0

                            Part I  (必做题,共5题,70)
老人拐杖哪种好
115分)
得分
  Let denote the t of all real polynomials of degree less than 3 with domain(定义域) . The addition and scalar multiplication are defined in the usual way. Define an inner product on by
                .
(1) Construct an orthonormal basis for from the basis by using the Gram-Schmidt orthogonalization process.
(2) Let. Find the projection of onto the subspace spanned by{}.
Solution:
(1) 画蛇添足读后感  吃莲藕有什么好处, ,                           
,          退伍费一览表
 
  -------------------------------------------------------------------------------------------
(2) 
----------------------------------------------------------------------------------------------------------------
215分)
得分
医院污水处理
  Let be the linear transformation on (the vector space of real polynomials of degree less than 3) defined by
                          .
(1) Find the matrix reprenting with respect to the ordered basis [] for .
(2) Find a basis for such that with respect to this basis, the matrix B reprenting is diagonal.
(3) Find the kernel(核) and range (值域)of this transformation.
Solution:
      (1)
-----------------------------------------------------------------------------------------------------------------
      (2)
(The column vectors of T are the eigenvectors of A)
The corresponding eigenvectors in are
(T diagonalizes A)
  . With respect to this new basis , the reprenting matrix of is diagonal.                                                    -------------------------------------------------------------------------------------------------------------------      (3) The kernel is the subspace consisting of all constant polynomials.           
      The range is the subspace spanned by the vectors               
-----------------------------------------------------------------------------------------------------------------------
320分)
得分
Let .
(1) Find all determinant divisors and elementary divisors of.
(2) Find a Jordan canonical form of .
(3) Compute . (Give the details of your computations.)
Solution:
  (1)
,(特征多项式 . Eigenvalues are 1, 2, 2.)
Determinant divisor of order , ,
Elementary divisors are .                             
----------------------------------------------------------------------------------------------------------------------
  (2)  The Jordan canonical form is
-
-------------------------------------------------------------------------------------------------------------------------
  (3)  For eigenvalue 1, An eigenvector is 
      For eigenvalue 2, ,  An eigenvector is
Solve , we obtain that
                                     
--------------------------------------------------------------------------------------------------------------------
  410分)
党参的禁忌人群得分
Suppo that and .
(1) What are the possible minimal polynomials of?  Explain.
(2) In each ca of part (1), what are the possible characteristic polynomials of?  Explain.
Solution:
  (1) An annihilating polynomial of A is .
  The minimal polynomial of A divides any annihilating polynomial of A.
The possible minimal polynomials are
, , and .                                 
---------------------------------------------------------------------------------------------------------------
(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors.
    Ca , the characteristic polynomial is                      
  Ca , the characteristic polynomial is                        
    Ca 椒太郎, the characteristic polynomial is or
  -------------------------------------------------------------------------------------------------------------------
510分)
得分
顽皮的杜鹃歌曲
Let . Find the Moore-Penro inver of .
Solution:
   
也可以用SVD求.                                       
------------------------------------------------------------------------------------------------------------------
Part II  (选做题, 每题10)
    请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.
  6 Let be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication. Let be three distinct real numbers.  For each pair of polynomials and in, define

本文发布于:2023-05-19 02:02:16,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/915116.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:三题   批改   需要   标明
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图