第四章 数据分析(梅长林)习题答案

更新时间:2023-05-19 01:27:35 阅读: 评论:0

第四章 习题
一、习题4.4
解:(1)通过SAS 的proc princomp 过程对相关系数矩阵R 做主成分分析,得到个主成分的贡献率以及累计贡献率如表1所
美丽的房子表 1
从表中可以得到特征值向量为:
]0.2429 0.4515  0.5396  0.8091  2.8567[=*λ
第一主成分贡献率为:57.13 %      第二主成分贡献率为:16.18 % 第三主成分贡献率为: 10.79%      第四主成分贡献率为:9.03 % 第五主成分贡献率为:6.86 %
进一步得到各主成分分析结果如表2所示:
表 2
(2)由(1)中得到的结果可知前两个主成分的累积贡献率为73.32%,得到第一主成分、第二主成分为:
54212.044215.034702.024571.014636.01x x x x x Y ++++=*
55820.045257.032604.025093.012404.02x x x x x Y ++---=*
由于1*Y 是五个标准化指标的加权和,由此第一主成分更能代表三种化工股票和两种石油股票周反弹率的综合作用效果,1*Y 越大表示各股票的综合周反弹率越大。*
2Y 中关于三种化工股票的周反弹率系数为
负,而关于两种石油的系数为正,它放映了两种石油周反弹率和三种化工股票周反弹率的对比,*城市灾害
2Y 的绝对值越大,
表明两种石油周反弹率和三种化工股票周反弹率的差距越大。 二、习题4.5
解:(1)利用SAS 的proc corr 过程求得相关系数矩阵如表3:
表 3
(2)从相关系数矩阵出发,通过proc princomp 过程对其进行主成分分析,表4给出了各主成分的贡献率以及累积贡献率:
表  4
太原蒙山大佛
第一主成分贡献率为:38.70 % 第二主成分贡献率为:29.59 % 第三主成分贡献率为:11.50% 第四主成分贡献率为:8.82 % 第五主成分贡献率为:6.23 % 第六主成分贡献率为:2.87 % 其中前两个主成分的累计贡献率为68.29%
(3)通过上面的计算得到各主成分,见表5:
表  5
8
5093
.
7
3171
.
6
6927
.
5
02169
.
4
2541
.
3
0185
.
2
5192
.
1
2496少林春秋大刀
.
1
x
x
x
x
x
x
x
x
Y
+
+
+
+
+个人信托
-
+ =
0.0871x8
-0.2607x7-0.1347x6
+0.5754x5+0.5381x4+0.4754x3+0.0376x2--0.2413x12 Y
由于是1Y 八个标准化标值的加权值,因此它反映了平均消费数据的综合指标。对于Y1,它反映了各省人均消费水平,除烟茶酒外,其他支出越高,其人均总体消费水平越高,而烟茶酒对其消费水平评价成反方向。在Y 2中人均粮食,人均副食品,人均燃料,人均非商品的系数为负;人均烟茶酒、人居其他副食、人均衣着、人均日用品系数为正,说明Y2的绝对值越大,各省人均消费的在生活必需品与高档品差异越大。
根据第一主成分的得分对各个省份进行排序,见表6:
表 6
Obs location Prin1
Obs location Prin1
1 广东    6.89591 16 宁夏 -0.43040
2 上海    3.24842 17 湖南 -0.51802
3 北京    1.7921
4 18 陕西 -0.61274 4 浙江    1.51507 19 云南 -0.66670
工匠精神的作文
5 海南    1.4011
6 20 新疆 -0.81850 6 福建    1.15390 21 青海 -1.11335
7 广西    1.05651 22 安徽 -1.11496
世界第一猛犬8 天津 0.43543 23 甘肃 -1.18223
9 江苏 0.15329 24 内蒙古 -1.25819 10 辽宁 0.04520 25 贵州 -1.25934 11 西藏 -0.13324 26 吉林 -1.29370 12 四川 -0.13489 27 黑龙江 -1.32567 13 山东 -0.14112 28 河南 -1.48595 14 湖北 -0.17044 29 山西 -1.68448 15 河北
-0.39220
30 江西
-1.96091
三、习题4.6
解:(1)通过SAS的proc princomp过程计算得到样本协方差矩阵见表7:
表7
求得协方差矩阵的特征值以及各样本主成分的贡献率、累计贡献率结果如表8:
表8
从以上结果可看出前三个主成分贡献率已占89.38%,大于剩下三个成分的总和,已包含原始数据的大量信息,所以保留前三个主成分即可。
杂粮煎饼薄脆
(2)通过SAS的proc princomp过程对其相关系数矩阵进行主成分分析,首先得到相关系数矩阵见表9:

本文发布于:2023-05-19 01:27:35,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/915000.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:成分   反弹   得到   股票   矩阵   消费水平   分析
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图