多元应用统计第八章答案
1、对某高中一年级男生38人进行体力测试(共7项指标)及运动能力测试(共5项指标),试对两组指标做典型相关分析。
体力测试指标:x1-反复横向跳(次),x 2-纵跳(cm),x 3-臂力(kg),x 4-握力(kg),x 5-台阶试验(指数),x 6-立定体前屈(cm),x 7-俯卧上体后仰(cm)。
运动能力测试指标: x8-50米跑(秒),x 9-跳远(cm),x 10-投球(m),x11-引体向上(次),x12-耐力跑(秒)。
矩阵
Run MATRIX procedure:
一、两组变量间的相关系数
Correlations for Set-1
X1 X2 X3 X4 X5 X6 X7
X1 1.0000 .2701 .1643 -.0286 .2463 .0722 -.1664贸易公司名称
X2 .2701 1.0000 .2694 .0406 -.0670 .3463 .2709
X3 .1643 .2694 1.0000 .3190 -.2427 .1931 -.0176
X4 -.0286 .0406 .3190 1.0000 -.0370 .0524 .2035
X5 .2463 -.0670 -.2427 -.0370 1.0000 .0517 .3231
X6 .0722 .3463 .1931 .0524 .0517 1.0000 .2813
X7 -.1664 .2709 -.0176 .2035 .3231 .2813 1.0000
Correlations for Set-2
X8 X9 X10 X11 X12
X8 1.0000 -.4429 -.2647 -.4629 .0777
X9 -.4429 1.0000 .4989 .6067 -.4744
X10 -.2647 .4989 1.0000 .3562 -.5285
X11 -.4629 .6067 .3562 1.0000 -.4369
X12 .0777 -.4744 -.5285 -.4369 1.0000
Correlations Between Set-1 and Set-2
X8 X9 X10 X11 X12
X1 -.4005 .3609 .4116 .2797 -.4709
X2 -.3900 .5584 .3977 .4511 -.0488
X3 -.3026 .5590 .5538 .3215 -.4802
X4 -.2834 .2711 -.0414 .2470 -.1007
X5 -.4295 -.1843 -.0116 .1415 -.0132
X6 -.0800 .2596 .3310 .2359 -.2939
X7 -.2568 .1501 .0388 .0841 .1923
首先给出的是Correlations for Set-1、Correlations for Set-2为两组变量的内部各自相关矩阵。两个矩阵左下角和右上角数据一样,Set-1中的相关系数都不大。Set-2中x9-跳远(cm)和x11-引体向上(次)相关系数很大,两个指标之间似乎有很大的联系,可能这两个指标反映同一反面,可以考虑合并。Correlations Between Set-1 and Set-2给出的是各变量两两相关矩阵,需要做的是提取综合指标来代表这种相关性。其中x3和x9之间关联度很大达0.5590,由于变量间交互作用只能作为参考不能反映两组变量间的实质联系。
二、典型相关系数及显著性检验
Canonical Correlations
1 .848
2 .707
3 .648
4 .351
5 .290
Test that remaining correlations are zero:
Wilk's Chi-SQ DF Sig.
1 .065 83.194 35.000 .000
2 .23
3 44.440 24.000 .007
3 .466 23.302 15.000 .078
4 .803 6.682 8.000 .571
藏污纳垢造句5 .91
6 2.673 3.000 .445
首先给出的是Canonical Correlations,提取出了5个典型相关系数的大小,分别为0.848、0.707、0.648、0.351、0.290.第一典型相关系数比两组间的任一个相关系数大。最后给出了Test that remaining correlations are zero为检验各相关系数有无统计意义,检验总体系数是否为0假设。可见第一、二个典型相关系数有统计意义。
三、典型变量系数
Standardized Canonical Coefficients for Set-1
1 2 3 4 5
X1 .475 .115 .391 -.452 -.462
X2 .190 -.565 -.774 .307 .489
X3 .634 .048 .288 .321 -.276
开始的近义词X4 .040 .080 -.400 -.906 .422
X5 .233 .773 -.681 .459 .233
X6 .117 .148 .425 .141 .649
X7 .038 -.394 .025 -.103 -1.029
Raw Canonical Coefficients for Set-1
1 2 3 4 5
X1 .141 .034 .116 -.134 -.137
X2 .026 -.076 -.104 .041 .066
X3 .040 .003 .018 .020 -.018
X4 .008 .015 -.075 -.169 .079
X5 .016 .054 -.047 .032 .016
X6 .020 .025 .071 .024 .109
X7 .005 -.048 .003 -.013 -.126
Standardized Canonical Coefficients for Set-2
1 2 3 4 5
X8 -.505 -.659 .577 .186 .631
X9 .209 -1.115 .207 -.775 -.292
X10 .365 -.262 .188 1.153 -.154
X11 -.068 -.034 -.579 .340 1.181
X12 -.372 -.896 -.649 .569 -.124
利休
牛瘟Raw Canonical Coefficients for Set-2
1 2 3 4 5
X8 -1.441 -1.879 1.647 .531 1.798
X9 .005 -.026 .005 -.018 -.007
X10 .133 -.095 .069 .419 -.056河南理工大学是几本
炒白菜的家常做法
X11 -.018 -.009 -.153 .090 .312
X12 -.012 -.029 -.021 .018 -.004
上表Standardized Canonical Coefficients for Set-1、Raw Canonical Coefficients for Set-1、Standardized Canonical Coefficients for Set-2、Raw Canonical Coefficients for Set-2给出了检验个典型变量间标化与未标化的系数列表。因为两个指标之间没有相同的量纲,故使用标准化的数据。得出标准化之后的典型变量的转换公式:
蔡伦
U1=0.475x1+0.19x2+0.634x3+0.04x4+0.233x5+0.117x6+0.038x7
V1=-0.505x8+0.209x9+0.365x10+-0.068x11-0.372x12
U2=0.115x1+-0.565x2+0.048x3+0.08x4+0.773x5+0.148x6-0.394x7 V2=-0.659x8-1.115x9-0.262x10-0.034x11-0.896x12
四、典型结构分析