点云库PCL模块简介
黄永恒1前言
PCL(PointCloudLibrary)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、MacOSX、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的结晶,那么PCL就在3D信息获取与处理上具有同等地位,PCL是BSD授权方式,可以免费进行商业和学术应用。
对于3D点云处理来说,PCL完全是一个的模块化的现代C++模板库。其基于以下第三方库:Boost、Eigen、FLANN、VTK、CUDA、OpenNI、Qhull,实现点云相关的获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。PCL利用OpenMP、GPU、CUDA等先进高性能计算技术,通过并行化提高程序实时性。K近邻搜索操作的构架是基于FLANN(FastLibraryforApproximateNearestNeighbors)所实现的,速度也是目前技术中最快的。PCL中的所有模块和算法都是通过Boost共享指针来传送数据的,因而避免了多次
复制系统中已存在的数据的需要,从0.6版本开始,PCL就已经被移入到Windows,MacOS和Linux系统,并且在Android系统也已经开始投入使用,这使得PCL的应用容易移植与多方发布。
2 PCL应用平台搭建
机器人领域移动机器人对其工作环境的有效感知、辨识与认知,是其进行自主行为优化并可靠完成所承担任务的前提和基础。如何实现场景中物体的有效分类与识别是移动机器人场景认知的核心问题,目前基于视觉图像处理技术来进行场景的认知是该领域的重要方法。但移动机器人在线获取的视觉图像质量受光线变化影响较大,特别是在光线较暗的场景更难以应用,随着RGBD获取设备的大量推广,在机器人领域势必掀起一股深度信息结合2D信息的应用研究热潮,深度信息的引入能够使机器人更好地对环境进行认知、辨识,与图像信息在机器人领域的应用一样,需要强大智能软件算法支撑,PCL就为此而生,最重要的是PCL本身就是为机器人而发起的开源项目,PCL中不仅提供了对现有的RGBD信息的获取设备的支持,还提供了高效的分割、特征提取、识别、追踪等最新的算法,最重要的是它可以移植到android、ubuntu等主流Linux平台上,PCL无疑将会成为机器人应用领域一把瑞士军刀。
基于PCL的应用
2.2 PCL的潜在应用领域
2.2.1 CAD/CAM、逆向工程
大部分工业产品是根据二维或三维CAD模型制造而成,但有时因为数据丢失、设计多次更
改、实物引进等原因,产品的几何模型无法获得,因而常常需要根据现有产品实物生成物体几何模型。逆向工程技术能够对产品实物进行测绘,重构产品表面三维几何模型,生成产品制造所需的数字化文档。
在一些工业领域,如汽车制造业,许多零件的几何模型都通过逆向工程由油泥模型或实物零件获得,目前在CAD/CAM领域利用激光点云进行高精度测量与重建成为趋势,同时引来了新的问题,通过获取的海量点云数据,来提取重建模型的几何参数,或者形状模型,对模型进行智能检索,从点云数据获取模型的曲面模型等,诸如此类的问题解决方案在PCL中都有涉及。
例如kdtree和octree对海量点云进行高效压缩存储与管理,其中滤波、配准、特征描述与提前基础处理,可以应用于模型的智能检索,以及后期的曲面重建和可视化都在PCL中有相应的模块。总之,三维点云数据的处理是逆向工程中比较重要的一环,PCL中间所有的模块正是为此而生的。不可不戒
2.2.2激光遥感测量
能够直接获取高精度三维地面点数据,是对传统测量技术在高程数据获取及自动化快速处理方面的重要技术补充。激光遥感测量系统在地形测绘、环境检测、三维城市建模、地球科学、行星科学等诸多领域具有广泛的发展前景,是目前最先进的能实时获取地形表面三维空间信息和影像的遥感系统。目前,在各种提取地面点的算法中,算法结果与世界结果之间差别较大,违背了实际情况,PCL中强大的模块可以助力此处的各种需求。
2.2.3 VR领域
小学英语手抄报
虚拟现实、人机交互虚拟现实技术(简称VR),又称灵境技术,是以沉浸性、交互性和构想性为基本特征的计算机高级人机界面。它综合利用了计算机图形学、仿真技术、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间,具有广阔的应用前景。
3 PCL模块库介绍
5月19日是什么星座
最重要的PCL模块库有如下:过滤器Filters、特征Features、关键点Keypoints、注册Registration、Kd树Kd-tree、八叉树Octree、切分Segmentation、Sample Connsus、Surface、Range Image、文件读写I/O、Visualization、通用库Common、Search。
南开大学软件学院
3.1 I/O模块濮阳美食
PCL中I/O库提供了点云文件输入输出相关的操作类,并封装了 OpenNI 兼容的设备源数据获取接口,可直接从众多感知设备获取点云图像等数据。I/O模块利用21个类与28个函数实现了对点云的获取、读人、存储等相关操作,其依赖于 pcl_common 和 pcl_octree模块以及OpenNI 外部开发包。莲衣
OpenNI是一个多语言、跨平台的框架,它定义了一套用于编写通用自然交互应用的 API。OpenNI的主要目的就是形成标准的API,便于下面两个接口之间进行通信:
绵山大罗宫(1)视觉和音频传感器(用来感知周围环境信息)。
(2)视觉和音频感知中间件(用来对应用场景中所记录的音频和视觉数据进行分析与理解,例如能够接收一份可见的图像数据并返回从中检测到的手掌位置信息)。
OpenNI兼容设备
3.2 KD-TREE
通过雷达、激光扫描、立体摄像机等三维测量设备获取的点云数据,具有数据量大、分布不均匀等特点。 作为三维领域中一个重要的数据来源,点云数据主要是表征目标表面的海量点集合,并不具备传统实体网格数据的几何拓扑信息。 所以点云数据处理中最为核心的问题就是建立离散点间的拓扑关系,实现基于邻域关系的快速查找。
kd-tree 或者 k维树是计算机科学中使用的一种数据结构,用来组织表示k维空间中点集合。 它是一种带有其他约束条件的二分查找树。 kd-tree 对于区间和近邻搜索十分有用。 我们为了达到目的,通常只在三个维度中进行处理,因此所有的kdtree 都将是三维 kd tree。