初二一次函数压轴题整理
初二一次函数压轴题复习精讲
1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积.
2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负半轴上,△ABO的面积是3.
(1)求点B的坐标;(2)求直线AB的解析式;
(3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最短?若存在,直接写出点M的坐标;若不存在,说明理由.
(4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的面积.
3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2?
(2)求△COB的面积;
(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
4.如图,在平面直角坐标系中,长方形的顶点的坐标分别为,.(1)直接写出点的坐标;
(2)若过点的直线交边于点,且把长方形的周长分为1:3两部分,求直线的解析式;(3)设点沿的方向运动到点(但不与点重合),求△的面积与点所行路程之间的函数关系式及自变量的取值范围
5.已知直线经过点、.(1)求直线的解析式;
(2)当时,求的取值范围;
(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.
6.在平面直角坐标系xoy中,直线经过点,交y轴于点B,点D为x轴上一点,且
(1)求m的值 (2)求线段OD的长 (3)当点E在直线AB上(点E与点B不重合),,求点E的坐标
7.已知一次函数y=kx+b,y随x增大而增大,它的图象经过点(1,0)且与x轴的夹角为45°,
(1)确定这个一次函数的解析式;
(2)假设已知中的一次函数的图象沿x轴平移两个单位,求平移以后的直线及直线与y轴的交点坐标.
8.如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(1)求证:∠ABC=∠ACB;
(2)如图②所示,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.
(3)如图③所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A、C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.
9.设关于x一次函数y=a1x+b1与y=a2x+b2,我们称函数y=m(a1x+b1)+n(a2x+b2)
(其中m+n=1)为这两个函数的生成函数.
(1)请你任意写出一个y=x+1与y=3x-1的生成函数的解析式;
(2)当x=c时,求y=x+c与y=3x-c的生成函数的函数值;
(3)若函数y=a1x+b1与y=a2x+b2的图象的交点为P(a,5),当a1b1=a2b2=1时,求代数式m(a12a2+b12)+n(a22a2+b22)+2ma+2na的值.
10.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.