中 文 摘 要
透明导电氧化物薄膜(TCOs主要包括氧化铟In2O3、氧化锡SnO2和氧化锌ZnO 基三大基本体系)是一种兼具透光性与导电性光电材料。由于其光学和电学的特点被广泛应用在触摸屏、光催化、压敏器件、气敏器件和太阳能电池等领域。因此,实现透光率和电阻率的良好匹配是生产者所追求的目标。
室温下采用射频磁控溅射粉末靶,在玻璃基底上制备氧化锌、掺铝氧化锌(AZO)薄膜和三氧化二铟(In2O3)薄膜,并通过控制制备态氧分压、退火氧分压、退火温度、电解池析氢pH、电沉积电压以及构建特殊三维ZnO光电极结构等方法调控薄膜的光电性能。采用扫描电镜、X射线衍射仪、紫外可见分光光度计、霍尔效应仪、拉曼光谱等手段对薄膜微观结构和光电性能进行表征分析。主要研究结果如下:
(1)真空退火后的AZO薄膜仍具有c轴择优取向的六方纤锌矿结构,薄膜表面致密光滑;随退火氧分压的降低,薄膜表面颗粒尺寸逐渐减小,透光率逐渐下降,而电阻率逐渐降低;随着退火温度上升,薄膜表面形貌没有明显变化,透光率略有下降,电阻率逐渐下降,在450 ℃退火时载流子浓度提高到1.86×1020 / cm3,而电阻率降低到1.42×10-2 Ω·cm。
(2)AZO薄膜作为电解池阴极材料,仅在电解水析氢作用下,AZO薄膜的光学和电学性能随着电解电压、电解时间和电解温度的改变而改变;随着电解Zn(NO3)2溶液pH降低,AZO薄膜透光率和电阻率都发生明显改变,电解液pH=5时,AZO薄膜的光电性能最为优异,透光率有原始AZO薄膜的91.3 %降低至90.1
%,电阻率由原始的7.1×10-1 Ω·cm降到3.7×10-3 Ω·cm;电解溶液为氯化锌时,沉积电压增大,薄膜表面吸附的锌增加,透光率逐渐下降,而电阻率由3.3×10-2 Ω·cm降低到2.9×10-3 Ω·cm。
(3)磁控溅射中纯氩气制备的In2O3薄膜表面比较粗糙,其电阻率和透光率均小于氧氩比为1:10的In2O3薄膜;纯氩气制备的样品退火后,薄膜结晶度提高,透光率由84.31 %升高到87.34 %,电阻率由7.15×10-4 Ω.cm升高到9.75×10-3 Ω.cm;在氧分压相同条件下,退火态样品与制备态样品结晶度相似,但透光率升高,电阻率降低,综合光电性能更为优良;SnCl4溶液配合沉积电压为2V时In2O3薄膜光学性能变化不明显,电阻率明显下降。沉积Sn后氧化退火使In2O3薄膜电阻率增大,透光率提高。
(4)构建了二维纳米薄膜加一维纳米棒的特殊三维ZnO光电极结构,薄膜层溅射功率增加,导致光学带隙减小;纳米棒中的Al若形成有效掺杂也能减小禁带宽度;薄膜层掺铝生长ZnO纳米棒并进行共退火能够更为有效的减小ZnO带隙宽度,实现集流层与光活化吸收层的良好匹配。
关键词:In2O3薄膜;ZnO薄膜;氧空位;透光率;电阻率
ABSTRACT
The transparent conductive oxide film (TCOs mainly includes three basic systems of indium oxide In
2O3, tin oxide SnO2 and zinc oxide ZnO) is an optoelectronic material capable of perfectly combining optical transparency and electrical conductivity. Due to its optical and electrical characteristics, it is widely ud in many fields, such as touch screen, photocatalysis, pressure nsitive devices, gas nsors, solar cells and so on. Therefore, it is the pursuit of the rearcher and manufacturer to adjust the light transmittance and resistivity to achieve the required performance.
Zinc oxide films, aluminum-doped zinc oxide (AZO) films and indium trioxide (In2O3) films were prepared on a glass substrate by RF magnetron sputtering powder target at room temperature. The photoelectric properties of the films were regulated by controlling the preparing oxygen partial pressure, deposition voltage, annealing oxygen partial pressure, annealing temperature, pH value in electrolysis, and construction of three-dimensional systems. The micro-structure and photoelectric properties of the films were characterized by Scanning Electron Microscopy, X-ray Diffractometry, Raman Spectroscopy, UV-visible Spectrophotometer and Hall Effect Meter. The main results are as follows:
(1) The AZO film annealed in the given oxygen partial pressure still has a c-axis preferred orientation of the hexagonal wurtzite structure, and the surface of the film is den and smooth. With the decrea
of the oxygen partial pressure in the annealing process, the particle size of the film surface gradually decreas, and the light transmittance and the resistivity decreas gradually. As the annealing temperature increas, the surface morphology of the film does not change significantly, and the light transmittance decreas slightly, and the resistivity gradually decreas. When annealed at 450℃, the carrier concentration of AZO film increas to 1.86×1020/cm3, and the resistivity of AZO film decreas to 1.42×10-2 Ω·cm.
(2) Oxygen Vacancy in AZO film ud as the cathode material of the electrolytic cell is regulated by hydrogen evolution during water electrolysis. The optical and electrical properties of the AZO film depend on the electrolyzing voltage, electrolyzing time, and electrolyzing temperature under the deionized water electrolysis. As the pH of the
electrolytic Zn(NO3)2 solution decreas, the transmittance and the resistivity of AZO film change significantly. When pH is 5, the photoelectric properties of AZO film are the most excellent, with the light transmittance reduced from 91.3 % of the original AZO film to 90.1 %, and the resistivity reduced from the original 7.1×10-1 Ω·cm to 3.7×10-3 Ω·cm. As the electrodepositing voltage increas in zinc chloride solution, the increasing zinc deposited on the surface of the film leads to the light transmittance reduction from 92.8 % to 77.9 %, and the resistivity reduction from 3.3×10-2
Ω·cm to 2.9×10-3 Ω·cm.
(3) Both the transmittance and the resistivity of In2O3film with a rough surface deposited in the pure Ar are lower than that of In2O3 film deposited in the O2:Ar of 1:10. After annealing, In2O3 film deposited in the pure Ar has a higher degree of crystallinity, which makes the transmittance increa from 84.31 % to 87.349 % and the resistivity increa from 7.15×10-4 Ω.cm to 9.75×10-3 Ω.cm. Under the same oxygen partial pressure conditions, the annealed In2O3 film has the higher transmittance and lower resistivity than the as-prepared In2O3film.The comprehensive photoelectric performance of In2O3film could be optimized by the electrodeposition of nano-sized Sn layer in SnCl4 solution with the deposition voltage of 2 V. The light transmittance of the film changes lightly while the resistivity decreas significantly. Oxidation annealing after deposition of Sn could improve the light transmittance of the composite film with the increasing resistivity.
(4) A three-dimensional ZnO photo-electrode structure with two-dimensional nano-film and one-dimensional nano-pillars was constructed. The increa of sputtering power of the film layer results in a decrea in optical band gap; The Al with an effective doping in the nano-pillars could reduce the width of band gap; Co-annealing the aluminum-doped ZnO nano-pillars on AZO film could reduce the width of band gap of three-dimensional ZnO more effectively and achieve a good match
between the two-dimensional current-collected layer and the one-dimensional photo-activated layer.
Key Words: In2O3Film, ZnO Film, Oxygen Vacancy, Transmittance,Resistivity
目 录
独创性声明 (i)
关于论文使用授权的说明 (i)
中 文 摘 要 (ii)
ABSTRACT (iii)
1. 绪论 (1)
1.1透明导电氧化物 (1)
1.1.1 In
2O
3
薄膜概述 (1)
1.1.2 SnO
2
薄膜概述 (2)
1.1.3 ZnO薄膜概述 (3)
1.1.4 透明导电薄膜导电机理 (4)
1.2 制备方法 (5)
1.2.1 磁控溅射法 (5)
1.2.2 分子束外延(MBE) (5)
1.2.3 脉冲激光沉积法 (6)
1.2.4 溶胶-凝胶法 (6)
1.2.5 化学气相沉积法 (6)
1.3 透明导电薄膜的应用与要求 (7)
1.3.1 透明电极 (7)
1.3.2 光催化 (7)
1.3.3 气敏传感器 (8)
1.4 本文的研究内容和创新 (9)
2. 实验设备及表征方法 (11)
2.1 实验设备 (11)
2.2 实验原料 (11)
2.3 表征方法 (12)
3. 真空退火优化AZO薄膜光电性能 (14)
3.1 实验 (14)
3.1.1 AZO薄膜制备 (14)
3.1.2 AZO薄膜退火处理 (15)
3.2 退火氧分压对AZO薄膜的影响 (15)
3.2.1 形貌分析 (15)
3.2.2 结构分析 (16)
3.2.3 光学性能分析 (17)
3.2.4 电学性能分析 (18)
3.2.5 拉曼光谱分析 (19)
3.3 退火温度对AZO薄膜的影响 (20)
3.3.1 形貌分析 (20)
3.3.2 结构分析 (21)
3.3.3 光学性能分析 (21)
3.3.4 电学性能分析 (22)
3.3.5 拉曼光谱分析 (23)
3.4 本章小结 (24)
4. 电学与化学协同作用优化AZO光电性能 (25)
4.1 实验 (25)
4.1.1 电解析氢 (25)
4.1.2 电沉积锌 (25)
4.2 电解水析氢对AZO薄膜光电性能影响 (26)
4.2.1 析氢电压对AZO光电性能影响 (26)
4.2.2 析氢时间对AZO光电性能影响 (27)
4.2.3 析氢温度对AZO光电性能影响 (29)
4.3 电解析氢对薄膜光电性能影响 (30)
4.3.1 形貌分析 (30)
4.3.2 结构分析 (31)
4.3.3 光学性能分析 (32)
4.3.4 电学性能分析 (33)
4.3.5 拉曼光谱分析 (34)
4.4 电沉积锌对薄膜光电性能影响 (34)
4.4.1 结构分析 (35)
4.4.2 光学性能分析 (35)
4.4.3 电学性能分析 (36)
4.4.4 拉曼光谱分析 (37)
4.5 本章小结 (37)
5. In
2O
3
薄膜光电性能的调控 (39)
5.1 实验 (39)
5.1.1 In
2O
3
薄膜的制备 (39)
5.1.2 退火实验 (40)
5.1.3 电沉积实验 (40)
5.2 氧分压对In
2O
3
薄膜的影响 (40)
5.2.1 形貌分析 (40)
5.2.2 结构分析 (42)
5.2.3 光学性能分析 (43)
5.2.4 电学性能分析 (44)
5.3 电沉积Sn对In
2O
3
薄膜的影响 (45)
5.3.1 形貌分析 (45)
5.3.2 结构分析 (46)
5.3.3 光学性能分析 (47)
5.3.4 电学性能分析 (48)
5.4 本章小结 (48)
6. 三维ZnO光电极性能调控 (49)
6.1 实验 (49)
6.2 ZnO薄膜制备功率对三维ZnO性能影响 (50)
6.2.1 形貌分析 (50)
6.2.2 结构分析 (51)
6.2.3 光学性能分析 (52)
6.3 ZnO纳米棒掺Al比例对三维ZnO性能影响 (52)
6.3.1 形貌分析 (52)