计算VaR的方法

更新时间:2023-05-09 01:49:03 阅读: 评论:0

计算VaR的方法
  主要包括方差一协方差法(Variance—Covariance Approach)、历史模拟法(Histor- ical Simulation Method)和蒙特卡罗模拟法(Monte-Carlo Sim- ulation)。
  方差一协方差法是假定风险因素收益的变化服从特定的分布,通常假定为正态分布,然后通过历史数据分析和估计该风险因素收益分布的参数值,如方差、均值、相关系数等,然后根据风险因素发生单位变化时,头寸的单位敏感性与置信水平来确定各个风险要素的VaR值;再根据各个风险要素之间的相关系数来确定整个组合的VaR值。当然也能够直接通过下面的公式计算在一定置信水平下的整个组合(这里的组合是单位头寸,即头寸为1)的VaR值,其结果是一致的。
  公式中表示整个投资组合收益的标准差,σi、σj表示风险因素i和j的标准差,ρij表示风险因子i和j的相关系数,xi表示整个投资组合对风险因素i变化的敏感度,有时被称为Delta.在正态分布的假设下,xi是组合中每个金融工具对风险因子i的Deka之和。
  历史模拟法以历史能够在未来重复为假设前提,直接根据风险因素收益的历史数据来模拟
风险因素收益的未来变化。在这种方法下,VaR值直接取自于投资组合收益的历史分布,组合收益的历史分布又来自于组合中每一金融工具的盯市价值(Mark to Market value),而这种盯市价值是风险因素收益的函数。具体来说,历史模拟法分为三个步骤:为组合中的风险因素安排一个历史的市场变化序列,计算每一历史市场变化的资产组合的收益变化,推算出VaR值。所以,风险因素收益的历史数据是该VaR模型的主要数据来源。
  蒙特卡罗模拟法即通过随机的方法产生一个市场变化序列,然后通过这个市场变化序列模拟资产组合风险因素的收益分布,最后求出组合的VaR值。蒙特卡罗模拟法与历史模拟法的主要区别在于前者采用随机的方法获取市场变化序列,而不是通过复制历史的方法获得,即将历史模拟法计算过程中的第一步改成通过随机的方法获得一个市场变化序列。市场变化序列既能够通过历史数据模拟产生,也能够通过假定参数的方法模拟产生。因为该方法的计算过程比较复杂,所以应用上没有前面两种方法广泛。

本文发布于:2023-05-09 01:49:03,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/872248.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:风险   变化   历史   收益
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图