function [T,fail,meth]=DefineBas(T,ntries)
% [T,fail]=DefineBas(T,ntries)
%
% This function implements a heuristic algorithm to
% define the list of bas for the triangles in
% the mesh T. If it is successful, it adds the
% field Bas to T; T.Bas(i) is the index of
% the ba of triangle i in T.Edges.
%
% The input ntries determines how many times
% the heuristic algorithm is attempted; the default
% is ntries=4. (There is a random element to
% the algorithm, so it can be attempted repeatedly.
% The probability of success increas with ntries,
% but obviously so does the execution time.)
%
% The output flag fail is 0 if the algorithm succeeds
% (so that T.Bas is added to T) and nonzero if
% the algorithm fails (in which ca T is unchanged).
%
% T.Bas is ud by the newest node refinement algorithm.
% See LocalRefine1 for details.
% The following algorithm is bad on a linear programming
% formulation of the problem. If the linear program
% has an integer-valued solution, then DefineBas succeeds.
% However, this is not guaranteed. The code tries four
% non-random cost functions and then ntries-4 random
% cost functions, if necessary.
if nargin<2
ntries=4;
end
Nt=size(T.Elements,1);
Ne=size(T.Edges,1);
% First, get the triangle-edge incidence matrix
A=TriEdgeIncidence(T);
% Define the right-hand side for the LP constraints:
b=ones(Nt,1);
% Get the lengths of the edges in T:
c=zeros(Ne,1);
for i=1:Ne
c(i,1)=norm(T.Nodes(T.Edges(i,1),:)-T.Nodes(T.Edges(i,2),:));
end
% Weight boundary edges by half:
i=find(T.EdgeEls(:,2)<=0);
c(i)=0.5*c(i);
% Define ntries different cost functions.
%
% 1: Maximize the total length of the chon bas.
% 2: Maximize the number of bas chon.
% 3: Minimize the total length of the chon bas.
% 4: Minimize the number of bas chon.
% 5,6,...,ntries: random
C=[c,ones(Ne,1),-c,-ones(Ne,1)];
for i=5:ntries
C=[C,rand(Ne,1)];
end
% Invoke the simplex method up to ntries times, looking
% for an integer-valued solution:
fail=1;
for i=1:ntries
x=rsimplex(C(:,i),A,b,zeros(Ne,1),ones(Ne,1));
if norm(x-round(x))<100*eps*norm(x)
fail=0;
meth=i;
break
end
end
if fail
meth=0;
return
el
% An integer-valued solution was found.
% x now indicates the edges chon as bas. Loop through
% the triangles and record the ba of each:
T.Bas=zeros(Nt,1);
for i=1:Nt
e=abs(T.Elements(i,:));
T.Bas(i)=e(find(x(e)==1));
end
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function A=TriEdgeIncidence(T)
% A=TriEdgeIncidence(T)
%
% This function computes the triangle-edge incidence
% matrix of the mesh T. The result is an Nt by Ne
% spar 0-1 matrix.
Nt=size(T.Elements,1);
Ne=size(T.Edges,1);
A=spar(Nt,Ne);
for i=1:Nt
A(i,abs(T.Elements(i,
:)))=1;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x=rsimplex(c,A,b,l,u)
% x=rsimplex(c,A,b,l,u)
%
% This function applies the revid simplex method to the LP
%
% max c'x
% s.t. Ax=b
% l<=x<=u
% Get the problem size
[m,n]=size(A);
% Get a value for scaling:
sval=max([max(max(abs(A))),max(abs(b))])*1e5*eps;
% Set up the Pha 1 LP
% Create the augmented cost vector and constraint matrix
c1=zeros(m+n,1);
A1=[A,speye(m)];
% Assign the basic variables
bfs.B=n+1:n+m;
% Assign the nonbasic variables
bfs.N1=[];
bfs.N2=[];
bfs.N3=[];
bfs.x=zeros(n+m,1);
for j=1:n
if l(j)>-inf
bfs.x(j)=l(j);
bfs.N1=[bfs.N1,j];
elif u(j)<inf
bfs.x(j)=u(j);
bfs.N2=[bfs.N1,j];
el
bfs.N3=[bfs.N3,j];
end
end
% Solve for the basic variables
bfs.x(n+1:n+m)=b-A*bfs.x(1:n);
% Create the extended constraints and
% define the extended cost vector
l1=[l;zeros(m,1)];
u1=[u;zeros(m,1)];
for i=1:m
if bfs.x(n+i)>=0
l1(n+i)=0;
u1(n+i)=inf;
c1(n+i)=-1;
el
l1(n+i)=-inf;
u1(n+i)=0;
c1(n+i)=1;
end
end
% Now invoke rsimplex_bfs to solve the Pha 1 LP
bfs=rsimplex_bfs(c1,A1,b,l1,u1,bfs);
% If the optimal value in Pha 1 is not zero, then the
% program is infeasible.
if any(abs(bfs.x(n+1:n+m))>sval)
error('The LP is infeasible')
% Otherwi, invoke Pha 2
el
% Change the bounds for the artificial variables
l1(n+1:n+m)=zeros(m,1);
u1(n+1:n+m)=zeros(m,1);
% Change the extended cost vector
c1=[c;zeros(m,1)];
% Apply the simplex method again
[bfs,tflag]=rsimplex_bfs(c1,A1,b,l1,u1,bfs);
x=bfs.x(1:n);
z=c'*x;
if tflag==1
error('The LP is unbounded')
end
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [bfs,tflag]=rsimplex_bfs(c,A,b,l,u,bfs);
% [bfs,termcode]=rsimplex_bfs(c,A,b,l,u,bfs);
%
% This function applies the revid simplex method to the LP
%
% max c'x
% s.t. Ax=b
% l<=x<=u
%
% An initial basic feasible solution bfs must be provided.
% The basic feasible solution is described by a structure
% containing the following fields
%
% bfs.x - the BFS itlf (an n-vector)
% bfs.B - the index t for the basis
% bfs.N1 - the index t for the nonbasic variables at
% their lower bounds
% bfs.N2 - the index t for the nonbasic variables at
% their upper bounds
% bfs.N3 - the index t for the unrestricted nonbasic
% variables
% (The index ts are all row vectors.)
%
% The return code termcode indicates how the simplex method
% terminated:
%
% termcode==0 - Optimal solution found
% termcode==1 - LP is unbounded
% Get the problem size
[m,n]=si
ze(A);
% Get a value for scaling:
sval=max([max(max(abs(A))),max(abs(b))])*1e5*eps;
% Main iteration
done=0;
while ~done
% Get the basis A_B matrix and factor it
AB=A(:,bfs.B);
[L,U]=lu(AB);
% Gather the indices of the nonbasic variables
N=[bfs.N1,bfs.N2,bfs.N3];
n1=length(bfs.N1);
n2=length(bfs.N2);
n3=length(bfs.N3);
% Step 1: Compute the dual vector y and the vector of
% prices
y=L'\(U'\c(bfs.B));
cbar=c(N)-A(:,N)'*y;
% Now choo the entering variable
% First identify all of the candidates:
i1=find(cbar(1:n1)>sval);
i2=find(cbar(n1+1:n1+n2)<-sval);
i3=find(abs(cbar(n1+n2+1:n1+n2+n3))>sval);
% If there are no candidates, the current BFS is optimal
if impty(i1)&impty(i2)&impty(i3)
done=1;
break;
end
% If there are candidates, choo the entering variable by
% the smallest-subscript rule.
pc=min([bfs.N1(i1),bfs.N2(i2),bfs.N3(i3)]);
if impty(bfs.N1)
i1=[];
el
i1=find(bfs.N1==pc);
end
if ~impty(i1)
Nflag=1;
pc=bfs.N1(i1);
el
if impty(bfs.N2)
i2=[];
el
i2=find(bfs.N2==pc);
end
if ~impty(i2);
Nflag=2;
pc=bfs.N2(i2);
el
if impty(bfs.N3)
i3=[];
el
i3=find(bfs.N3==pc);
end
if ~impty(i3)
if cbar(n1+n2+i3)>0
Nflag=3;
el
Nflag=4;
end
pc=bfs.N3(i3);
el
error('Inconsistency in choice of entering variable')
end
end
end
% Step 2: Find the changes in the basic variables and choo the
% leaving variable
d=U\(L\A(:,pc));
% Identify the candidates for leaving variables
% First look among the basic variables
pr=[];
len=0;
for i=1:m
if (d(i)>sval & (Nflag==1|Nflag==3)) | ...
(d(i)<-sval & (Nflag==2|Nflag==4))
if l(bfs.B(i))>-inf
len=len+1;
pr(len,:)=[i,abs((bfs.x(bfs.B(i))-l(bfs.B(i)))/d(i))];
end
elif (d(i)>sval & (Nflag==2|Nflag==4)) | ...
(d(i)<-sval & (Nflag==1|Nflag==3))
if u(bfs.B(i))<inf
len=len+1;
pr(len,:)=[i,abs((bfs.x(bfs.B(i))-u(bfs.B(i)))/d(i))];
end
end
end
% Now look at the entering variable itlf
if Nflag==1
% The entering variable is increasing
if u(pc)<inf
len=len+1;
pr(len,:)=[0,u(pc)-bfs.x(pc)];
end
elif Nflag==2
% The entering variable is decreasing
if l(pc)>-inf
len=len+1;
pr(len,:)=[0,bfs.x(pc)-l(pc)];
end
end
if len==0
% No variable must leave the basis, so the LP is unbounded
done=1;
tflag=1;
return
end
% Now we can choo the candidates for the leaving variables
t=min(pr(:,2));
k=find(abs(pr(:,2)-t)<sval);
% Check to e if the entering variable should immediately leave
if pr(k(length(k)),1)==0
% The entering variable leave immediately. We just switch
% its index from N1 to N2 or vice versa
ipr=pc;
pr=0;
if Nflag==1
bfs.N2=[bfs.N2,bfs.N1(i1)];
bfs.N1=[bfs.N1(1:i1-1),bfs.N1(i1+1:n1)];
elif Nflag==2
bfs.N1=[bfs.N1,bfs.N2(i2)];
bfs.N2=[bfs.N2(1:i2-1),bfs.N2(i2+1:n2)];
el
error('Inconsistency in entering-leaving variable')
end
elif length(k)==1
% There is only one candidate for the leaving variable
ipr=bfs.B(pr(k,1));
pr=pr(k,1);
el
% There are multiple candidates to leave the basis.
% Choo the leaving variable according to the
% smallest-subscript rule.
[ipr,k1]=min(bfs.B(pr(k,1)));
pr=pr(k(k1),1);
end
% Finally, update the index ts and the new BFS
if Nflag==1 | Nflag==3 % Entering variable increas
bfs.x(bfs.B)=bfs.x(bfs.B)-t*d;
bfs.x(pc)=bfs.x(pc)+t;
el % Entering variable decreas
bfs.x(bfs.B)=bfs.x(bfs.B)+t*d;
bfs.x(pc)=bfs.x(pc)-t;
end
% Update the index ts unless the entering variable
% is also the leaving variable.
if pc~=ipr
if Nflag==1 & d(pr)>0
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N1(i1);
bfs.N1(i1)=tmp;
elif Nflag==1 & d(pr)<0
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N1(i1);
bfs.N1=[bfs.N1(1:i1-1),bfs.N1(i1+1:n1)];
bfs.N2(n2+1)=tmp;
elif Nflag==2 & d(pr)<0
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N2(i2);
bfs.N2=[bfs.N2(1:i2-1),bfs.N2(i2+1:n2)];
bfs.N1(n1+1)=tmp;
elif Nflag==2 & d(pr)>0
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N2(i2);
bfs.N2(i2)=tmp;
elif (Nflag==3 & d(pr)>0) | (Nflag==4 & d(pr)<0)
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N3(i3);
bfs.N3=[bfs.N3(1:i3-1),bfs.N3(i3+1:n3)];
bfs.N1(n1+1)=tmp;
el
tmp=bfs.B(pr);
bfs.B(pr)=bfs.N3(i3);
bfs.N3=[bfs.N3(1:i3-1),bfs.N3(i3+1:n3)];
bfs.N2(n2+1)=tmp;
end
end
end
tflag=0;