分布式存储中HDFS与Ceph两者的区别是什么,各有什么优势?

更新时间:2023-05-05 19:16:37 阅读: 评论:0

分布式存储中HDFSCeph两者的区别是什么,各有什么优势?
过去两年,我的主要工作都在Hadoop这个技术栈中,而最近有幸接触到了Ceph。我觉得这是一件很幸运的事,让我有机会体验另一种大型分布式存储解决方案,可以对比出HDFSCeph这两种几乎完全不同的存储系统分别有哪些优缺点、适合哪些场景。
对于分布式存储,尤其是开源的分布式存储,站在一个SRE的角度,我认为主要为商业公司解决了如下几个问题:
可扩展,满足业务增长导致的海量数据存储需求;
比商用存储便宜,大幅降低成本;
稳定,可以驾驭,好运维。
总之目标就是:又好用,又便宜,还稳定。但现实似乎并没有这么美好
本文将从这三个我认为的根本价值出发,分析我运维Ceph的体会,同时对比中心化的分布式存储系统,比如HDFS,横向说一说。
一、可扩展性
Ceph声称可以无限扩展,因为它基于CRUSH算法,没有中心节点。 而事实上,Ceph确实可以无限扩展,但Ceph的无限扩展的过程,并不完全美好。
首先梳理一下Ceph的写入流程。Ceph的新对象写入对象,需要经过PG这一层预先定义好的定额Hash分片,然后PG,再经过一次集群所有物理机器硬盘OSD构成的Hash,落到物理磁盘。
因此,Ceph的所有对象,是先被pre-hash到了一个固定数量的桶(PG)当中,然后根据集群的整体物理架构crushmap,选择落在具体的机器磁盘上。
这对扩容有什么影响呢?
1.扩容粒度
我给扩容粒度的定义是:一次可以扩容多少台机器。
Ceph在实践中,扩容受容错域制约,一次只能扩一个容错域。
容错域就是:副本隔离级别,即同一个replica的数据,放在不同的磁盘/机器/Rack/机房。
容错域这个概念,在很多存储方案里都有,包括HDFS。为什么Ceph会受影响呢?因为Ceph没有中心化的元数据结点,导致数据放置策略受之影响。
数据放置策略,即一份数据replica,放在哪台机器,哪块硬盘。
中心化的,比如HDFS,会记录每一个文件,下面每一个数据块的存放位置。这个位置是不会经常变动的,只有在1.文件新创建;2.balancer重平衡;3.有硬盘坏了,中心节点针对损坏硬件上的数据重新放置时才会改变。
Ceph,因为去中心化,导致容纳数据的PG的位置,会根据crushmap的变化而变化。 来了新的机器、硬盘,就要为一些受影响的PG计算新的位置。 基于一致性哈希的技术,在扩容时也要面临同样的问题。
因此,Ceph扩容需要PG们调整。正因为这个调整,导致Ceph受容错域制约。
例如:有一个PG,是3副本,Ceph集群有一个配置是PG要向外提供正常服务,至少有2
完整的副本。而当这个数据pool的容错域是host时,同时扩容2台机器,一些PG就有可能把3副本中的2个都映射到2台新机器上去。而这2个副本都是新副本,都没有完整的最新数据。剩下的一个副本,无法满足老机器至少有完整的2副本的要求,也就不能提供正常读写服务了。
这就会导致这个PG里的所有对象,停止对外服务。
作为admin,当然可以把配置降低,把数据poolmin_size下降为1。但这种配置,即使在正常情况下,因为磁盘故障,都有可能丢失数据,因此一般不会这样设置。
那在扩容时,一次只扩容一台机器时,是不是就安全了呢?
这样就能保证所有PG都至少在老机器有2个完整的副本了。可是,即使是扩容一台机器,也还要面临扩容时老机器中有硬盘坏掉,导致PG的完整副本又下降为1的极端情况发生。
虽然PG有可能不能服务,但数据的持久性是没有问题的。国内AT的云,服务可靠性都没有做得特别高,做到像持久性那样3949。虽然我不确定这两朵大云里的对象存储是不是使用的Ceph,但只要是基于类似CRUSH算法,或者一致性哈希等类似的去中心化技
术实现的对象存储,应该都会面对部分数据暂时不可服务的情况。
我们抛开最极端的情况,即假设在扩容时,以一个容错域加入机器时,暂时没有磁盘损坏。那么有没有办法可以提升扩容粒度呢?
办法是,在开始规划Ceph集群时,设定好更大层次的容错域,比如Rack 可以是真实的Rack,即使没有也可以是逻辑的Rack。这样扩容时,可以扩一个逻辑容错域,就可以打破扩一台机器的限制,扩一整个Rack,至少有好几台机器。
TIps:这里我没有讲为什么扩容粒度小是个不好的事。其实在很多公司,数据的日均增长量是很有可能大于一台机器的存储容量的。这就会造成扩容速度赶不上写入速度的尴尬局面。这对于开始没有设计好,图快速deploy而架设的集群,在后期是一个不小的伤害。
2.扩容时crushmap的改变
Ceph是根据crushmap去放置PG的物理位置的,倘若在扩容进行了一半时,又有硬盘坏掉了,那Cephcrushmap就会改变,Ceph又会重新进行PGre-hash,很多PG的位置又会重新计算。如果运气比较差,很可能一台机器的扩容进度被迫进行了很久才回到稳定的状
态。
这个crushmap改变导致的Ceph重平衡,不单单在扩容时,几乎在任何时候,对一个大的存储集群都有些头疼。在建立一个新集群时,硬盘都比较新,因此故障率并不高。但是在运行了2-3年的大存储集群,坏盘真的是一个稀松平常的事情,1000台规模的集群一天坏个2-3块盘很正常。crushmap经常变动,对Ceph内部不稳定,影响真的很大。随之而来,可能是整体IO的下降(磁盘IO被反复的rebalance占满),甚至是某些数据暂时不可用。
所以总的来说,Ceph的扩容是有那么一丁点不痛快的。Ceph确实提供了无限的扩展能力,但扩容过程并不平滑,也不完全可控。crushmap的设计,达到了很好的去中心化效果,但也给集群大了之后的不稳定埋下了一个坑。
而对比中心化元数据的HDFS,在扩容时几乎无限制,你可以撒欢地扩容。老数据的搬迁,重平衡都会由单独的job来处理,处理也很高效。它采用了满节点和空节点两两配对的方式,从老节点移动足够的数据,填满新机器即可。中心化元数据在扩容重平衡时,反而变成了一个优点。
3.扩容到一定量级后,PG数量需调整
如上文的Ceph数据写入流程图所示,Ceph对象的最小放置单位是PGPG又会被放在硬盘上,PG理论上肯定是越大越好。因为这样数据的分片随机性更好,更能掩盖伪随机造成的单块盘容量偏差过大问题。但PG数量在现实中不是越大越好的,它要受限于硬件,如CPU、内存、网络。 因此我们在规划PG数时,不会盲目调大,一般社区也是建议200pg / osd
假设我们现在有10台机器,每台一块硬盘一共10块盘,有1024PGPG都是单副本,那么每个盘会存100PG。此时这个设置非常健康,但当我们集群扩容到1000台机器,每台硬盘就只放一个PG了,这会导致伪随机造成的不平衡现象放大。因此,admin就要面临调整PG数量,这就带来了问题。
PG,基本也就意味着整个集群会进入一种严重不正常的状态。几乎50%的对象,涉及到调整后的PG都需要重新放置物理位置,这会引起服务质量的严重下降。
虽然调整PG不是一个经常性的事件,但在一个大型存储,随着发展,不可避免会经历这个大考。
二、比商用存储便宜
我们所说的和商业存储比较,一般就是和EMCIBM这类硬件软件存储解决方案厂家,或者云解决方案AliyunAWS之类的对比。
自己建设机房,当然在硬件单价上更为便宜,但需要考虑综合成本,包括:1.硬件成本;2.自养运维人员成本;3.服务质量由一般向好慢慢收敛。
人的成本这种玄学的问题,我就不谈了,本文只谈Ceph在硬件成本这块有什么有趣的地方。讲道理,自己建机房,硬件成本应该是毫无疑问的便宜,那么Ceph在这里有什么特殊呢?
问题在于,集群可靠利用率。
集群可靠利用率,即整个集群在容量达到某个水平时不可对外服务,或者说不能保持高可用的服务。
打个比方,我们的手机闪存/电脑硬盘,是不是到99%了还能正常工作? 当然,因为是本地存储嘛。对于云解决方案,也天然就没有这个问题了。
对于商用存储解决方案,比如EMCIsilon分布式文件系统,存储容量达到甚至98-99%,仍能对外提供服务。

本文发布于:2023-05-05 19:16:37,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/858340.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:数据   扩容   机器   集群   没有
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图