斐波那契数列

更新时间:2023-04-22 08:43:15 阅读: 评论:0


2023年4月22日发(作者:脾火)【斐波那契数列的定义】

“斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。



斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……

这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。)

有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。





【奇妙的属性】

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……

从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。 斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。 斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:

1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1

2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)

3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1 数媒专业

4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)f(n+1) 5.f(0)-f(1)+f(2)-…+(-1)^nf(n)=(-1)^n[f(n+1)-f(n)]+1

6.f(m+n)=f(m-1)f(n-1)+f(m)f(n)

利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。

7.[f(n)]^2=(-1)^(n-1)+f文档求和怎么操作 (n-1)f(n+1) 8.f(2n-1)=[f(n)]^2-[f(n-2)]^2

9.3f(n)=f(n+2)+f(n-2)

10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]





【斐波那契数列与黄金比】

1/1=1,2/1=2,3/2=1.5骆驼祥子好词佳句 ,5/3=1.6…,8/5=1.6,…………89/55=1.61818…,…………233/144=1.618055…





【相关的数学问题】

1.排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法? 这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法…… 1,2,3,5,8,13……所以,登上十级,有89

种走法。

2.数列中相邻两项的前项比后项的极限

当n趋于无穷大时,F(n)/F(n+1)的极限是多少? 这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表大自然的和谐的一个数字。 3.求递推数列a(1)=1,a(n+1)=1+1/a(n)的通项公式 由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。





【斐波那契数列别名】

斐波那契数列又因数学家列昂纳多斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 这个数列是意大利中世纪生蚝的作用 数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,)





【斐波那契数列公式的推导】

斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2,,X2=(1-√5)/2 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2 解得C1=1/√5,C2=-1/√5 ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5) 通项公式的推导方法二:普通方法 设常数r,s 使得F(n)-r*F(n-1)=s*[F(n俏字组词 -1)-r*F(n-2)] 则r+s=1, -rs=1 n≥3时,有 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)] F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)] …… F(3)-r*F(2)=s*[F(2)-r*F(1)] 将

以上n-2个式子相乘,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)] ∵s=1-r,F(1)=F(2)=1 上式可化简得: F(n)=s^(n-1)+r*F(n-1) 那么: F(n)=s^(n-1)+r*F(n-1) = s^(n-1) + r*s^(n-2) + r^2*F(n-2) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3) …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + 国庆祝 r^(n-1) (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和) =[s^(n-1)-r^(n-1)*r/s]/(1-r/s) =(s^n - r^n)/(s-r) r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2 则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 迭代法 已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式 解 :设an-a(n-1)=(a(n-1)-a(n-2)) 得+=1 =-1 构造方程x²-x-1=0,解得=(1-√5)/2,=(1+√5)/2或=(1+√5)/2,=(1基本模数 -√5)/2 所以 an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1 an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2 由式1,式2,可得 an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3 an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4 将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} `````






本文发布于:2023-04-22 08:43:15,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/842441.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:斐波那契数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图