2023年4月14日发(作者:下级生)电气化铁路的牵引动力是电力机车,机车本身不带能源,所需能源由电力牵引供电系统提供。牵引供电系统主要是指牵引变电所和接触网两大部分。变电所设在铁道附大学生学年鉴定
近,它将从发电厂经高压输电线送来的电流,送到铁路上空的接触网上。接触网是向电力机车直接输送电能的设备。沿着铁路线的两旁,架设着一排支柱,上面悬挂着金属线,即为接触网,它也可以被看作是电气化铁路的动脉。电力机车利用车顶的受电弓从接触网获得电能,牵引列车运行。牵引供电制式按接触网的电流制有直流制和交流制两种。直流制是将高压、三相电力在牵引变电所降压和整流后,向接触网供直流电,这是发展最早的一种电流制,到20世纪50年代以后已较少使用。交流制是将高压、三相电力在变电所降压和变成单相后,向接触网供交流电。交流制供电电压较高,发展很快。我国电气化铁路的牵引供电制式从一开始就采用单相工频(50赫)25千伏交流制,这一选择有利于今后电气化铁路的发展。
和传统的蒸汽机车或柴油机车牵引列车运行的铁路不同,电气化铁路是指从外部电源和牵引供电系统获得电能,通过电力机车牵引列车运行的铁路。它包括电力机车、机务设施、牵引供电系统、各种电力装置以及相应的铁路通信、信号等设备。电气化铁路具有运输能力大、行驶速度快、消耗能源少、运营成本低、工作条件好等优点,对运量大的干线铁路和具有陡坡、长大隧道的山区干线铁路实现电气化,在技术上、经济上均有明显的优越性。
用电力机车作为牵引动力的铁路。世界上第一条电气化铁路于1879年在德国柏林建成。中国于1961年建成第一条电气化铁路——宝成铁路的宝鸡至凤州段。电气化铁路问世后发展很快,法国、日本、德国等国家已成为电气化铁路为主的铁路运输业,大部分货运量是由电气铁路完成的。电气化机车上不设原动机,其电力由铁路电力供应系统提供。该系统由牵引变电所和接触网构成。来自高压输电线路的高压电经牵引变电所降压整流后,送至铁路架空接触网,电气机车通过滑线弓受电,牵引机车行驶。供电制式分为直流制。电气化铁路与现有其他动力牵引的铁路相比,具有的优越性是能源节省,其热效率可达 20%~26% ;运输能力大 ,功率大,可使牵引总重提高;运输成本低,维修少,机车车辆周转快,整备作业少、耗能少;污染少,粉尘与噪声小,劳动条件也较好等。中国的电气化铁道总里程已经突破24万公里,
跃居世界第二。电气化铁道具有运载能力强、行车速
度快、节约能源、对环境污染小等优点,在现代国民经
济发展中
起着举足轻重的作用。
但是,由于电气化铁道牵引负载所具有的随即波
动性和不对称性,其给公共电网带来的诸如负序电流、
谐波以及无功功率等电能质量问题也引起了极大的关
注。研究如何利用有效手段治理电气化铁道牵引负载
所带来的一系列电能质量问题,确保电网中其他电力
设备的安全经济运行具有重大意义。
2 电气化铁道牵引供电系统
21 概述
我国的动力供电电网电压一般为110kV或者
220kV,通过牵引变压器转换为275kV作为牵引动力
机车的供电。现在普遍流行的牵引变压器种类主要有接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。
接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车。
支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根据接触网所在区间、站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。
定位装置包括定位管和定位器,其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱。
支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中采用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。
接触网的电压等级
接触网的电压等级:工频单相交流制:25KV
接触悬挂的类型
接触网的分类大多以接触悬挂的类型来区分。我们所讲的接触悬挂的分类是对接触网的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。
简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。国内外对简单悬挂做了不少研究和改进。我国现采用的带补偿装置的弹性简单悬挂系在接触线下锚处装设了张力补偿装置,以调节张力和弛度的变化。在悬挂点上加装8~16m长的弹性吊索,通过弹性吊索悬挂接触线,这就减少了悬挂点处产生的硬点,改善了取流条件。另外跨距适当缩小,增大接触线的张力去改善弛度对取流的影响。
链形悬挂的接触线是通过吊弦悬挂
在承力索上。承力索悬挂于支柱的支持装置上,使接触线在不增加支柱的情况下增加了悬挂点,利用调整吊弦长度,使接触线在整个跨距内对轨面的距离保持一致。链形悬挂减小了接触线在跨距中间的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。
链形悬挂比简单悬挂得到了较好的性能,但也带来了结构复杂、造价高、施工和维修任务量大等许多问题。
链形悬挂分类方法较多,按悬挂链数的多少可分为单链形,双链形和多链形(又称三链形)。目前我国采用单链形悬挂。
链形悬挂根据线索的锚定方式(即线索两端下锚的方式),可分为下列几种方式未补偿链形悬挂、半补偿柏仁
链形悬挂、全补偿链形悬挂。
接触网供电方式
接触网供电方式有单边、双边供电和越区供电。
单边和双边供电为正常的供电方式。
单边供电:供电臂只从一端的变电所取得电流的供电方式。
双边供电:供电臂从两端相邻的变电所取得电流的供电方式。
越区供电是一种非正常供电方式(也称事故供电方式)。
越区供电是当某一牵引变电所因故障不能正常供电时,故障变电所担负的供电臂,经开关设备成分区亭同相邻的供电臂接通,由相邻牵引变电所进行临时供电。
复线区段的供电情况与上述类同,但牵引变电所馈出线有四条,分别向两侧上、下行接触网供电。牵引变电所同一侧上、下行实现并联供电,提高供电臂末端电压。越区供电时,通过分区亭内的开关设备去实现。
接触网的特点及要求
接触网担负着把从牵引变电所获得的电能直接输送给电力机车使用的重要任务。因此接触网的质量和工作状态将直接影响着电气化铁道的运输能力。
由于接触网是露天设置,没有备用,线路上的负荷又是随着电力机车的运行而沿接触线移动和变化的,对接触网提出以下要求:
1、在高速运行和恶劣的气候条件下,能保证电力机车正常取流,要求接触网在机械结构上具有稳定性和足够的弹性。
2、接触网设备及零件要有互换性,应具有足够的耐磨性和抗腐蚀能力并尽量廷长设备的使用年限。
3、要求接触网对地绝缘好,安全可靠。
4、设备结构尽量简单,便于施工,有利于运营及维修。在事故情况下,便于抢修和迅速恢复送电。
5、尽可能地降低成本,特别要注意节约有色金属及钢材。
总的来说,要求接触网无论在任何条件下,都能保证良好地供给电力机车电能,保证电力机车在线路上安全,高速运行,并在符合上述要求的情况下,尽可能地节省投资、结构合理、维修简便、便于新技
术的应用。支柱及基础
支柱是接触网中最基本、应用最广泛的支撑设备,用来承受接触悬挂与支持设备的负荷。接触网支柱,按其使用材质分为预应力钢筋混凝土支柱和钢支柱两大类。
预应力钢筋混凝土支柱,简称为钢筋混凝土支柱采用高强度的钢筋,在制造时预先使钢筋产生拉力,它比普通钢筋混凝土支柱在同等容量情况下节省钢材、强度大、支柱轻等优点。钢筋混凝土支柱本身是一个整体结构,不需另制基础
钢柱以角钢焊成架结构,具有支柱较轻、强度高、抗碰撞、安装运输方便等优点。根据安装使用地点不同,钢柱的型号规格及外形结构也不同。
支柱按其在接触网中的作用可分为中间支柱、转换支柱、中心支柱、锚柱、定位支柱道岔支柱、软横跨支柱、硬横跨支柱及桥梁支柱等几种。
接触网支柱的侧面限界
接触网支柱的侧面限界是指支柱靠线路一侧至线路中心线的距离。它是为了确保行车的安全。
支柱侧面限界任何时候不得小于2440mm;机车走行线可降为2000mm;曲线区段适当加宽;直线中间支柱一般取为2500mm;软横跨支柱一般取为3000mm;软横跨支柱位于站台时,为便于旅客行走,一般取为3000mm。
接触网支柱及定位装置
支柱装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备
定位装置包括定位管和定位器。其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱,定位器有直管定位器、弯管定位器。提速后采用带减振阻尼装置的多功能定位器,改善了受电弓的取流特性。
接触网承力索
接触网承力索的作用是通过吊弦将接触线悬挂起来。承力索还可承载一定电流来减小牵引网阻抗,降低电压损耗和能耗。
承力索根据材质可分为铜承力索、钢承力索、铝包钢承力索。
钢承力索需采取防腐措施。
接触网吊弦
在链形悬挂中,接触线通过吊弦悬挂在承力索上。按其使用位置是在跨距中、软横跨上或隧道内有不同的吊弦类型,吊弦是链形悬挂中的重要组成部件之一。
在链形悬挂中安设吊弦,使每个跨距中在不增加支柱的情况下,增加了对接触线的悬挂点,这样使接触线的弛度和弹性均得到改善,提高了接触线工作质量。另外,通过调节吊弦的长度来调整,保证接触线对轨面的高度,使其符合技术要求。
普通环节吊弦以直径4mm(一般称为8号铁线)的镀锌铁线制成。
提速后采用不锈钢直吊弦,不锈钢直吊弦是一个整体
吊弦,减小了检修工作量,提高了接触悬挂的工作特性。
接触网导线
单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引
变压器、Scott变压器等。我国电气化铁道采用工频交
流50Hz三相供电单相用电,其负荷牵引电力机车的
功率大,速度、负载状况变化频繁,且具有不对称的特
性,导致牵引电网具有功率因数低、谐波含量高、负序
电流大等特点,不但自身损耗大,而且对公共电网及铁
路沿线的其他电力设备也带来严重危害,必须采取有
效措施加以治理[1]。
22 单相变压器牵引供电网
采用单相牵引变压器的牵引供电系统拓扑结构如
图1所示[bears怎么读
2]。
单相接线牵引网采用单相变压器供电,供电方式
又分为单相接线方式和V-V接线方式。单相接线牵
引变压器的原边跨接于三相电力系统中的两相;副边
一端与牵引侧母冠词用法
线连接,另一端与轨道及接地网连接。
牵引变压器的容量利用率高,但其在电力系统中单相
牵引负荷产生的负序电流较大,对接触网的供电不能
实现双边供电。所以,这种结线只适用于电力系统容
量较大,电力网比较发达,三相负荷用电能够可靠地由
地方电网得到供应的场合。另外,单相牵引变压器要
按全绝缘设计制造。而单相V-V接线将两台单相变
压器以V的方式联于三相电力系统每一个牵引变电
所都可以实现由三相系统的两相线电压供电。两变压
器次边绕组,各取一端联至牵引变电所两相母线上。
而它们的另一端则以联成公共端的方式接至钢轨引回
的回流线。这时,两臂电压相位差60接线,电流的不
对称度有所减少。这种接线即通常所说的60接线。
23 三相Y-D11变压器牵引供电网
采用三相Y-D11牵引变压器的牵引供电系统拓
扑结构如图2所示[2]。
三相Y-D11结线牵引变压器的高压侧通过引入
线按规定次序接到110kV或220kV,三相电力系统的高
压输电线上;变压器低压侧的一角c与轨道,接地网连
接,变压器另两个角a和b分别接到275kV的a相和b
相母线上。由两相牵引母线分别向两侧对应的供电臂
供电,两臂电压的相位差为60,也是60接线。因此,在
这两个相邻的接触网区段间采用了分相绝缘器。
3 SVC静止型动态无功补偿装置
31 SVC的发展
静止型动态无功补偿装置SVC是一种先进的高
压电网动态功率因数补偿装置。它通过提高功率因数
来节约大量的电能,同时又起到减少电网谐波、稳定电
压、改善电网质量(环境)的作用。20世纪70年代以
来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容
器(TSC)以及二者的混合装置(TCR+TSC)等主要形
式组成的静止无功补偿器(SVC)得到快速发展。SVC
可以看成是电纳值能调节的无功元件,它依靠电力电
子器
件开关来实现无功调节。SVC作为系统补偿时可
以连续调节并与系统进行无功功率交换,同时还具有
较快的响应速度,它能够维持端电压恒定
32 SVC的工作原理及在电网中应用
TCR+TSC型SVC的基本拓扑结构见图3。它由
1台TCR、2台TSC以及2个无源滤波器组成,在实际
系统中,TSC及无源滤波的组数可根据需要设置。
TCR的工作原理是通过控制与相控电抗器连接
的反并联晶闸管对的移相触发脉冲来改变电抗器等效
电纳的大小,从而输出连续可变的无功功率。图3中
两个晶闸管分别按照单相半波交流开关运行,通过改
变控制角可以改变电感中通过的电流。的计量以
电压过零点为基准,在90~180之间可部分导通,
导通角增大则电流基波分量减小,等价于用增大电抗
器的电抗来减小基波无功功率。导通角在90~180
之间连续调节时电流也从额定到0连续变化,TCR提
供的补偿电流中含有谐波分量[3]。
TSC的工作原理是根据负载感性无功功率的变化
通过反并联晶闸管对来切除或者投入电容器。这里,
晶闸管只是作为投切开关,而不像TCR中的晶闸管起
相控作用。在实际系统中,每个电容器组都要串联一
个阻尼电抗器,以降低非正常运行状态下产生的对晶
闸管的冲击电流值,同时避免与系统产生谐振。用晶
闸管投切电容器组时,通常选取系统电压峰值时或者
过零点给学生的寄语
时作为投切动作的必要条件。由于TSC中的
电容器只是在两个极端的电流值之间切换,因此它不
会产生谐波,但它对无功功率的补偿是阶跃的。
TCR和TSC组合后的运行原理为:当系统电压低
于设定的运行电压时,根据需要补偿的无功量投入适
当组数的电容器组,并略有一点正偏差(过补偿),此
时再利用TCR调节输出的感性无功功率来抵消这部
分过补偿容性无功;当系统电压高于设定电压时,则切
除所有电容器组,只留有TCR运行。
4 电网电能质量综合控制与治理
41 谐波抑止与无功补偿
利用SVC动态无功补偿装置对牵引供电系统羽毛球打法
的
谐波和无功进行综合治理的关键是SVC最大无功补
偿量的确定和滤波器支路的设计[3]。
SVC最大无功补偿量Qsvc应该和设计线路牵引负
荷的大小相适应,应该按电气化铁道牵引负荷的最大
有功需求以及补偿后对装设地点功率因数或在最大无
功冲击时的最大电压损耗的要求来确定,具体可以按
照式(1)、(2)来计算。
QSVC=(tan1-tan2)Pmax(1)
式中,1、2分别为补偿前后110kV电源测功率
因数角;Pmax为电铁负荷最大有功需求。
QSVC=Qfmax-U%Xs(2)
式中,Qfmax为装设地点最大无功冲击;U%为装
设地点最大电压损耗要求;Xs为系统阻抗。
要想达到理想的谐波抑止效果,必须综合考虑FC
滤波支路的设计
,既要保证装置的安全运行,又要达到
预计的理想效果。在实际设计中,首先需要根据供电
臂中所含的谐波分量来确定FC滤波支路的组成。由
于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大
的比重,所以FC滤波支路一般由3、5、7次单调谐滤
波器构成。
当最大无功补偿容量和滤波支路的组成确定后,
如何将需补无功容量合理分配到各滤波支路中,这是
非常重要的问题。如果各滤波支路的容量分配不合
理,一方面会使设备安装总容量偏大,另一方面有可能
因为某此滤波回路补偿功率偏小而发生过负荷,对设
备安全运行造成影响。
一些著名的电气公司采用的一些算法如下[6]:
如西门子公司的无功功率补偿按式(3)分配
Qc(h)=QSVCIh/h∑Ih/h(3)
式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih
为供电臂第h次谐波电流。
BBC电气公司按照式(4)分配无功功率
Qc(h)=QSVC∑Ih(4)
AEG电气公司则按照式(5)分配无功
Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)
式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、
13次滤波支路分配的补偿容量。
42 负序电流补偿
牵引电力机车产生的大量负序电流给电网中其他
的电力设备的安全、经济运行带来极大影响。SVC静
止动态无功补偿装置在补偿负序和末端电压上有着相
当高的效率。工程应用上可以选择在电网系统和负荷
上都安装SVC[5]。
在电网系统端安装应用SVC来补偿脾胃不好如何调理
负序电流的
原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采
用哪一种牵引变压器,负序补偿的实现分为如下两步:
(1)电力因数修正。通过安装电容器件,使得每
相负荷都为电阻性。
(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相
的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA
相的电感性负荷G/ 3互相对称。
电流环路图和相位图分别如图4、5所示:
从图5可以明显看到线电流IA,IB,IC是对称
且正序的,BC相和CA相之间的阻抗负载也可以做到
类似的对称,因此系统中的所有负序电流都可以被补
偿而消除。
现在问题的关键是如何随着牵引负荷的起伏动态
地控制补偿需要的电容和电感器组。急于数字信号处
理器(DSP)的固定电容(FC)和晶闸管控制的电抗器
(TCR)的组合得以广泛应用,如图6所示。得益于
DSP对数据信息的快速处理,补偿所需的电容和电感
参数可以被快速、精确计算得到。
5 结论与展望
本文提出的基于静止动态无功补偿装置(SVC)的
电气化铁道牵引电网电能质量综合控制与治理原理与
方案具有重要的工程意义。电气化铁道的电能质量是
一个突出且严峻的课题与难题,要求我们不断探求新
的综合补偿方法,来综合控制与治理影响电能质量的
无功、谐波、负序
等因素,以提高电网电能质量,确保电
网安全、经济运行。
摘 要:架空式接触网是电气化铁路的牵引供电设备,为保证不间断地向电力机车供电,需经常进行检查与修理。鉴于我国铁路接触网仍需要采用停电检修方式,要求在列车运行图中预留停电检修的“天窗”时间,因而降低铁路通过能力。分析停电检修接触网不良影响的基础上,提出了改进措施。
关键词:接触网 “天窗” 通过能力 电气化铁路
1.接触网及其检修方式
1.1接触网
电力牵引所用电源,由铁路牵引变电所将国家电网输送来的110kV或220kV三相工频交流电变成25~27.5kV的单相工频交流电,通过沿线架设的接触网送给相邻两个供电臂内60km左右运行的电力机车或动车组。因此,如将电气化铁路牵引供电系统比作人体供血系统的话,牵引变电所是牵引供电的“心脏”,接触网是牵引供电的“血管”。
架空式接触网主要由支柱、承力索、接触线、定位装置、绝缘子和回流线、吸流变压器等组成,如图1。接触网架设在露天,投入运营后没有后备。 本文来自铁路吧
由于接触网架设在露天,极易受到气候变化、环境污染等方面的影响;高速、重载列车受电弓沿接触线滑行取流过程中磨擦、撞击,接触网的技术状态极易变化。为保证接触网不间断地向电力机车或动车组供电,必须经常检修。
本文来自铁路吧
铁路吧
1.2接触网检修方式
接触网人工检修方式有停电检修、间接带电检修和直接带电检修三种:
1)停电检修。在列车运行图中每日预留一定时间(单线铁路90min、双线铁路120min)不铺画列车运行线,用于停电检修接触网。
2)间接带电检修。利用列车运行间隙,借助绝缘工具(如绝缘杆)检测接触线高度;利用经过处理的水冲洗绝缘子等。
3)直接带电检修。利用绝缘梯车等电位带电作业,但在某些地段(隧道内、钢梁桥上)和某些检修项目(擦洗绝缘子)尚不能人工直接带电作业。
综上所述,利用列车运行间隙直接或间接带电作业,虽然不影响正常的运输秩序。但是,列车对数多、运输繁忙的电气化铁路,尤其是高速客运专线或既有双线自动闭塞区段,同方向列车追踪运行间隔时间只有6~8min,根本无法采用绝缘梯车人工等电位直接带电作业。因此,仍需在列车运行图中预留接触网停电检修的“天窗”时间。
2.安排接触网停电检修时间的方法
城际客运专线、城市轨道接触网停电检修主要安排在夜间0点至5点停止列车运行的时间。客货共线昼夜不间断运行列车的电气化
铁路只能在列车运行图预留90~120min不铺画运行线,停止列车运行的“天窗”作为接触网停电检修时间。目前,我国电气化铁路预留“天窗”的方法主要有:
铁路吧
1)全区段接触网同时停电检修的垂直型天窗(如图2所示)。由于同时停电距离太长,约150~200km,全区段15~20几个区间和车站同时停止列车运行,对铁路通过能力等方面的影响太大,一般不采用。
铁路吧
2)单线按供电臂分别停电检修的矩型天窗(如图3所示)。一个供电臂接触网长度约20~30km,对列车运行的影响较小。
本文来自铁路吧
铁路吧
3)双线自动闭塞按供电臂、按上、下行正线接触网分别停电检修的V型天窗(如图4所示)。
铁路吧
铁路吧
3.接触网停电检修的影响
停电检修接触网的影响主要有以下几方面:
1)降低铁路通过能力。据测算接触网停电检修时间90~120min,按区间通过能力公式每天少开3~6对列车,约降低铁路通过能力12%。
2)降低列车旅行速度。停电检修接触网,约有10~20列列车增加列车在中间站停留等待时间,按测算,约降低该区段平均旅行速度8%。
3)造成技术站货物列车到发不均衡,影响设备运用和作业效率。
本文来自铁路吧
4)无独立电源的车站需停止使用信号、集中联锁和闭塞设备,影响行车安全和作业效率。
4.减少停电检修影响的措施
1)广泛采用接触网检修车、自动检测车,不断提高接触网检测作业的机械化、自动化水平。
国外已有不少电气化铁路采用机械化、自动化检测和采用机械手间接带电维护接触网的设备,我国铁路《接触网运行检修规程》要求在160km/h及以上干线接触网工区应配备2台接触网快速多功能综合检修作业车,不断提高接触网间接带电作业的比重,减轻作业人员的劳动强度,提高检修质量,保证接触网不间断供电。
2)改变接触网“周期修”为“状态修”,避免盲目修,提高针对性。
目前,我国电气化铁路接触网是按照《接触网运行检修规程》规定的项目、内容和周期进行检查、测量和维修。不论接触网技术状态如何,到了检修周期规定的时间,技术状态良好的也要维修;不到检修周期规定时间的设备,技术状态不良的也得不到及时修理。使检修作业缺乏针对性,带有一定的盲目性。既浪费图定检修天窗时间,又难于提高接触网检修质量,影响供电设备的可靠性。
铁路吧
使用接触网检测机械化、自动化设备,不断测试接触网悬挂的
动态性能和技术参数,不断检查接触网的隐患和超限量,并根据检查、测试结果(统称为接触网的技术状态),有针对性地对其中技术状态不良处所进行维修,即采用“状态修”的方法,就能充分利用图定的检修时间,提高检修质量,保证接触网不间断地供电。
由成都铁路局和西南交通大学联合研制的接触网检测车,该车可以附挂于列车上,车上的检测设备可在高速运行中将接触网的技术状态及各项参数自动测试出来,并通过录像系统和微机数据处理系统,将一切数据实时打印记录下来,为接触网维修提供可靠依据,尤其是它能及时发现有缺陷或存在隐患的处所,从而做到及时处理,防患于未然,确保接触网供电安全、可靠。 3)按区间停电检修接触网,缩小停电范围,减少影响。
目前,我国电气化铁路多按供电臂停电检修接触网。然而,在AT供电条件下,一个供电臂长度一般为30~40km,供电范围包括3~4个中间站站场和区间,一般由一个接触网工区负责,按照检修周期规定的期限逐个区间循环对接触网有关部件进行检修。
按供电臂停电,实际上接触网工区只对其中一个站场或区间的接触网进行检修,其他区间和站场也因供电臂停电而不得不停止列车运行,浪费了2~3个区间的通过能力。 铁路吧
如果将串联式馈电线供电,改为供电线并联式供电,利用车站两端电分段和并联供电线上的刀闸(电源开关),分别向供电臂内各区间、站场供电时,只要切断需要检修区间(站场)的电源开关,即可实现该区间(站场)停电检修接触网,不影响供电臂内其他区间和站场的供电要求。这样可以减少同时停电的区间、站场数,减少接触网停电检修对通过能力的影响。
参考文献
郑松富,连义平,申红.电气化铁路行车组织(第四版).中国铁道出版社,2008
铁路吧
(责任编辑:福子)
-
转贴到
|