正切函数的性质

更新时间:2023-02-10 09:14:32 阅读: 评论:0

1、定义域:{x|baix≠(π/2)+kπ,k∈Z}。2、值域:实数集R。3、奇偶性:奇函数。4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数。5、周期性:**小正周期π(可用T=π/|ω|来求)。

正切函数的性质

6、**值:无**大值与**小值。

7、零点:kπ,k∈Z。

8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。

9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。

10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π(n∈Z)都是它的对称中心。

本文发布于:2023-02-10 09:14:32,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/758072.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:正切   函数   性质
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图