过点的切线方程怎么求

更新时间:2023-02-10 09:12:56 阅读: 评论:0

切线方程:比如y=x^2,用导数求过(2,3)点的切线方程。设切点(m,n),其中n=m^2,由y'=2x,得切线斜率k=2m。切线方程:y-n=2m(x-m),y-m^2=2mx-2m^2,y=2mx-m^2,因为切线过点(2,3),所以3=2m*2-m^2,m^2-4m+3=0,m=1或m=3。

切线介绍

几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。

切线方程介绍

切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

本文发布于:2023-02-10 09:12:56,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/757747.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:切线   方程
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图