初中数学 数学教案-不等式基本性质 教案

更新时间:2023-02-10 06:42:24 阅读: 评论:0

课题:§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程:一、引入课题1.  观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

y x 1 -1 1 -1 y x 1 -1 1 -1 y x 1 -1 1 -1 1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?

y x 1 -1 1 -1 3 函数图象是否具有某种对称性?2.  画出下列函数的图象,观察其变化规律:1.f(x) = x       1 从左至右图象上升还是下降 ______?       2 在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ .

y x 1 -1 1 -1 2.f(x) = -2x+1       1 从左至右图象上升还是下降 ______?       2 在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ .

y x 1 -1 1 -1 3.f(x) = x 2 1在区间 ____________ 上,f(x)的值随着x的增大而 ________ .       2 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义1.增函数       一般地,设函数y=f(x)的定义域为I,       如果对于定义域I内的某个区间D内的任意两个自变量x 1 ,x 2 ,当x 1 1的解集.

本文发布于:2023-02-10 06:42:24,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/737830.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图