一、教学目标
1.掌握菱形的判定.
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
3.通过教具的演示培养学生的学习兴趣.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法.
2.教学难点:菱形判定方法的综合应用.
四、课时安排
1课时
五、教具学具准备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
1.叙述菱形的定义与性质.
2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法.
此外还有别的两种判定方法,下面就来学习这两种方法.
菱形判定定理1:四边都相等的四边形是菱形.
菱 形判定定理2:对角钱互相垂直的平行四边形是菱形.图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.
分析判定2:
师问:本定理有几个条件?
生答:两个.
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直.
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等.
(由学生口述证明)
证明时让学生注意线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线 ,但都不是菱形.
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注意:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.
例4 已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.
求证:四边形 是菱形(按教材讲解).
1.小结:
(1)归纳判定菱形的四种常用方法.
(2)说明矩形、 菱形之间的区别与联系.
2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .
求证:四边形 为菱形.
八、布置作业
教材P19中9、10、11、13(2)
九、板书设计
十、随堂练习
教材P13中1、2、3
本文发布于:2023-02-10 06:36:20,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/737713.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |