初中数学 数学教案-二次根式的加减法 教案

更新时间:2023-02-10 06:35:02 阅读: 评论:0

课题:平行线的特征

[ 教学目标 ]:

1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。

[教材分析] :

教材设置了一个通过测量探索平行线特征的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线的性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。

[教学重点]

平行线的特征的探索

[教学难点]

运用平行线的特征进行有条理的分析、表达

[设计理念]

为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。

[教学过程]

一、 巩固旧知,问题引入。

巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论

在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。

二、实验验证,探索特征。

1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)

2、学生实验(发印好平行线的纸单)

(1)已知,a//b,任意画一条直线与平行线a、b相交。

(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系

(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)

3、实验结论:

两条平行线被第三条直线所截,同位角相等。

简记为“两直线平行,同位角相等”

识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?

4、问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢

如图,已知直线a//b,思考∠1与∠2、 ∠2与∠3之间有什么关系?为什么?

(小组讨论,给予充足的时间交流,可引导学生

与同位角进行比较,从而得出结论,关注学生在

此能否积极地、有条理地思考)

结论: “两直线平行,内错角相等”

“两直线平行,同旁内角互补”

(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)

、归纳平行线的三个性质及三个判定

三个性质:

三个判定:

三、例题学习,实践运用。

(一)找找看:

如图所示,AB∥D,A∥BD,分别找出与∠1相等或互补的角。

(学生可通过讨论交流找到所有的答案,

并标注在图中)

(二)做一做:

如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,

(1)∠1、∠3的大小有什么关系?∠2与∠4呢?

(2)反射光线B与EF也平行吗?

先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。

(1)    AB∥D→∠1=∠3→∠2=∠4

(2)    ∠2=∠4→B∥EF

(三)考考你:

如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=11°,∠D=100°。已知梯形的两底AD//B,请你求出另外两个角的度数。

(学生尝试用自己的方式书写说理过程)

(四)填空:

已知:如图,∠ADE=60°,∠B=60°,∠=0°。

问∠ AED等于多少度?为什么

∵ ∠ADE=∠B=60° (已知)

∴ DE//B( )

∴ ∠AED=∠=0° ( )

(通过填空题,检验学生对平行线的判定与性质的区分)

四、课堂小结:

1、说说平行线的三个性质是什么?

2、平行线的性质与平行线的判定的区别:

判定:角的关系       平行关系

性质:平行关系       角的关系

3、证平行,用判定;知平行,用性质。

五、课后作业:

教材62页1、2、3题平行线的

课题:平行线的特征

[ 教学目标 ]:

1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。

[教材分析] :

教材设置了一个通过测量探索平行线特征的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线的性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。

[教学重点]

平行线的特征的探索

[教学难点]

运用平行线的特征进行有条理的分析、表达

[设计理念]

为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。

[教学过程]

一、 巩固旧知,问题引入。

巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论

在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。

二、实验验证,探索特征。

1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)

2、学生实验(发印好平行线的纸单)

(1)已知,a//b,任意画一条直线与平行线a、b相交。

(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系

(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)

3、实验结论:

两条平行线被第三条直线所截,同位角相等。

简记为“两直线平行,同位角相等”

识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?

4、问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢

如图,已知直线a//b,思考∠1与∠2、 ∠2与∠3之间有什么关系?为什么?

(小组讨论,给予充足的时间交流,可引导学生

与同位角进行比较,从而得出结论,关注学生在

此能否积极地、有条理地思考)

结论: “两直线平行,内错角相等”

“两直线平行,同旁内角互补”

(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)

、归纳平行线的三个性质及三个判定

三个性质:

三个判定:

三、例题学习,实践运用。

(一)找找看:

如图所示,AB∥D,A∥BD,分别找出与∠1相等或互补的角。

(学生可通过讨论交流找到所有的答案,

并标注在图中)

(二)做一做:

如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,

(1)∠1、∠3的大小有什么关系?∠2与∠4呢?

(2)反射光线B与EF也平行吗?

先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。

(1)    AB∥D→∠1=∠3→∠2=∠4

(2)    ∠2=∠4→B∥EF

(三)考考你:

如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=11°,∠D=100°。已知梯形的两底AD//B,请你求出另外两个角的度数。

(学生尝试用自己的方式书写说理过程)

(四)填空:

已知:如图,∠ADE=60°,∠B=60°,∠=0°。

问∠ AED等于多少度?为什么

∵ ∠ADE=∠B=60° (已知)

∴ DE//B( )

∴ ∠AED=∠=0° ( )

(通过填空题,检验学生对平行线的判定与性质的区分)

四、课堂小结:

1、说说平行线的三个性质是什么?

2、平行线的性质与平行线的判定的区别:

判定:角的关系       平行关系

性质:平行关系       角的关系

3、证平行,用判定;知平行,用性质。

五、课后作业:

教材62页1、2、3题平行线的

本文发布于:2023-02-10 06:35:02,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/737615.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图